ده لـــة الكويت وزارة التربية

إمتحان نهاية الفترة الدراسية الأولى للصف الثاني عشر علمي 2016 / 2017 م

الزمن: ساعتان و 45 دقيقة عدد الصفحات 13 صفحه

المجال الدراسي: الرياضيات

القسم الأول: أسئلة المقال:

أجب عن الأسئلة التالية موضحا خطوات الحل في كل منها:

السوال الأول:

14

(6 درجات)

$$\lim_{x\to 0} \frac{\tan 2x + 3x\cos 4x}{5x}$$

(a) أوجد:

$$\frac{\tan 2x + 3x \cos 4x}{5x} = \frac{\tan 2x}{5x} + \frac{3x \cos 4x}{5x}$$
 [2]

$$= \frac{\tan 2x}{5x} + \frac{3}{5}\cos 4x , \quad x \neq 0 \quad [0.5]$$
V. KweduFiles.Com

$$\lim_{x \to 0} \left(\frac{\tan 2x}{5x} \right) = \frac{2}{5} \tag{1}$$

$$\lim_{x \to 0} \left(\frac{3x \cos 4x}{5x} \right) = \frac{3}{5} \lim_{x \to 0} \cos 4x = \frac{3}{5} (1) = \frac{3}{5}$$
 [1]

$$\lim_{x \to 0} \left(\frac{\tan 2x + 3x \cos 4x}{5x} \right) = \lim_{x \to 0} \left(\frac{\tan 2x}{5x} + \frac{3}{5} \cos 4x \right)$$
 [0.5]

$$= \lim_{x \to 0} \left(\frac{\tan 2x}{5x} \right) + \frac{3}{5} \lim_{x \to 0} (\cos 4x) \quad [0.5]$$

$$=\frac{2}{5}+\frac{3}{5}=1$$
 [0.5]

و المقالية ا

تابع السؤال الأول:

(8 درجات)

$$\lim_{x\to-\infty}\frac{\sqrt{3x^2-5x+1}}{3x-5}$$

الحل:

$$f(x) = \frac{\sqrt{3x^2 - 5x + 1}}{3x - 5} = \frac{\sqrt{x^2(3 - \frac{5}{x} + \frac{1}{x^2})}}{x(3 - \frac{5}{x})}$$
[1]

$$=\frac{|x|\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}{x(3-\frac{5}{x})}, |x|=-x$$
 يكون $x<0$ عندما (0.5)

$$= \frac{-x\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}{x(3\sqrt{\frac{5}{x}})W} = \sqrt{\frac{3-\frac{5}{x}+\frac{1}{x^2}}{\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}}$$

$$= \sqrt{\frac{3-\frac{5}{x}+\frac{1}{x^2}}{\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}} = \sqrt{\frac{3-\frac{5}{x}+\frac{1}{x^2}}{\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}}$$

$$= \sqrt{\frac{3-\frac{5}{x}+\frac{1}{x^2}}{\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}} = \sqrt{\frac{3-\frac{5}{x}+\frac{1}{x^2}}{\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}}$$

$$= \sqrt{\frac{3-\frac{5}{x}+\frac{1}{x^2}}{\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}} = \sqrt{\frac{3-\frac{5}{x}+\frac{1}{x^2}}{\sqrt{3-\frac{5}{x}+\frac{1}{x^2}}}}$$

$$\lim_{x \to -\infty} \left(3 - \frac{5}{x} + \frac{1}{x^2} \right) = \lim_{x \to -\infty} 3 - \lim_{x \to -\infty} \frac{5}{x} + \lim_{x \to -\infty} \frac{1}{x^2} = 3 - 0 + 0 = 3 , 3 > 0$$
 [1.5]

$$\lim_{x \to -\infty} \sqrt{3 - \frac{5}{x} + \frac{1}{x^2}} = \sqrt{\lim_{x \to -\infty} \left(3 - \frac{5}{x} + \frac{1}{x^2}\right)} = \sqrt{3}$$
 [1]

$$\lim_{x \to -\infty} \left(3 - \frac{5}{x} \right) = \lim_{x \to -\infty} 3 - \lim_{x \to -\infty} \frac{5}{x} = 3 - 0 = 3 \quad , \quad 3 \neq 0$$
 [1.5]

$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 - 5x + 1}}{3x - 5} = \lim_{x \to -\infty} \frac{-\sqrt{3 - \frac{5}{x} + \frac{1}{x^2}}}{3 - \frac{5}{x}}$$

$$= \frac{-\lim_{x \to \infty} \sqrt{3 - \frac{5}{x} + \frac{1}{x^2}}}{\lim_{x \to \infty} (3 - \frac{5}{x})} = \frac{-\sqrt{3}}{3} = \frac{-1}{\sqrt{3}}$$

السوال الثاني

14

: حيث [1,3] على الدالة f على الدرس الم

(7 درجات)

$$f(x) = \begin{cases} -2 \\ x^2 - 3 \end{cases}$$

$$: x = 1$$

$$1 < x < 3$$
$$x = 3$$

$$f(x) = x^2 - 3 \qquad : \ x \in (1,3)$$

$$\forall c \in (1,3), f(c) = c^2 - 3$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (x^2 - 3) = c^2 - 3$$

$$\Rightarrow \lim_{x \to c} f(x) = f(c) \quad \forall x \in (1,3)$$

(1).....
$$f$$
 are also f ::

ندرس اتصال الداله f عند $\chi=1$ عند $\chi=1$ ندرس اتصال الداله المالة الم

$$f(1) = -2$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 - 3)$$

$$= 1 - 3 = -2 = f(1)$$

(2)..... الداله
$$f$$
 متصله عند $x = 1$ الداله $x = 1$ الداله الداله عند (0.5]

ندرس إتصال الداله f عند x=3 من اليسار

$$f(3) = 5$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (x^{2} - 3)$$

$$= 9 - 3 = 6 \neq f(3)$$

(3)...... الداله
$$f$$
 غير متصله عند $x = 3$ من اليسار [0.5]

$$[1,3)$$
 من (1) ، (2) ، (3) و لكنها متصلة على $[1,3]$ من $[1]$ من $[1]$

تابع السؤال الثاني:

 $y = x \sin x$: (b)

 $y'' + y - 2 \cos x = 0$: فأثبت أن

الحل:

 $y = x \sin x$

(7 درجات)

$$y' = \sin x \cdot (x)' + x \cdot (\sin x)' = \sin x + x\cos x$$
 [3]

$$y'' = \cos x + \cos x \cdot (x)' + x \cdot (\cos x)'$$
 [1.5]

$$= \cos x + \cos x + x \cdot (-\sin x) = 2\cos x - x \sin x$$
 [1]

$$y'' + y - 2\cos x = 2\cos x - x\sin x + x\sin x - 2\cos x$$
 [1]

www.KweduFiles.Com

السؤال الثالث:

14

 $f(x) = x^3 - 3x + 2$: f بين أن الدالة (α)

(5 درجات)

تحقق شروط نظرية القيمة المتوسطة على الفترة [0,4] ثم أوجد قيمة c التي تنبيء بها النظرية

الحل:

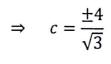
[0,4] دالة كثيرة حدود متصلة على $\mathbb R$ وبالتالي فهي متصلة على الفترة f

[0.5] وقابلة للاشتقاق على (4, 0)

: شروط نظرية القيمة المتوسطة محققة على الفترة [0,4] : يوجد على الأقل $c \in (0,4)$ بحيث:

 $f'(c) = \frac{f(b) - f(a)}{b - a}$ [0.5]

$\overline{WWW}.\overline{Kwe} \frac{f(4)-f(0)}{dtr} les.Com$


$$f(4) = (4)^3 - 3(4) + 2 = 54$$
 [0.5]

$$f(0) = (0)^3 - 3(0)^2 + 2 = 2$$
 [0.5]

$$f'(x) = 3x^2 - 3$$
 , $f'(c) = 3c^2 - 3$

$$\therefore 3c^2 - 3 = \frac{54 - 2}{4}$$
 [0.5]

$$3c^2 - 3 = 13 \implies 3c^2 = 16 \Rightarrow c^2 = \frac{16}{3}$$
 [0.5]

$$c = \frac{-4}{\sqrt{3}} \notin (0,4)$$

$$\therefore c = \frac{4}{\sqrt{3}} \in (0,4)$$
 [0.5]

تابع السؤال الثالث:

$$f(x) = 2x^2 - x^4 + 5$$
 : f الدرس تغير الدالة وارسم بيانها

(9 درجات)

الحل:

 $\mathbb{R}=(-\infty\,,\infty)$ دالة كثيرة حدود مجالها f

نوجد النهايات عند الحدود المفتوحة

$$\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}(-x^4)=-\infty\ ,\qquad \lim_{x\to\infty}f(x)=\lim_{x\to\infty}(-x^4)=-\infty \qquad \boxed{\textbf{0.5}}$$
 if all the contractions in the contraction of th

دالة كثيرة حدود فهي متصلة على $\mathbb R$ وقابلة للاشتقاق على f

$$f'(x) = 4x - 4x^3$$

$$f'(x) = 0 \implies 4x - 4x^3 = 0 \implies 4x(1 - x^2) = 0 \implies 4x(1 - x)(1 + x) = 0$$

$$4x = 0 \implies x = 0 \implies f(0) = 2(0)^{2} - (0)^{4} + 5 = 5$$

$$x = -1 \implies f(-1) = 2(-1)^2 - (-1)^4 + 5 = 6$$

$$(-1,6) : (0.5]$$

[2]: f' نكون الجدول لدر اسة إشارة

_∞	_	1 ()	1 ∞
الفترات	(-∞,-1)	(-1,0)	(0,1)	(1,∞)
`f!شارة	+ + +		+ + +	
<i>إ</i> سلوك الدالة	77	77	77	77

من الجدول:

$$f(1) = 6$$
 وتوجد قيمة عظمى محلية عند $x = 1$ وقيمتها و وتوجد قيمة عظمى محلية اشارة x'' :

$$f''(x) = 4 - 12 x^{2}$$
 [0.5]
$$f''(x) = 0$$
 idea

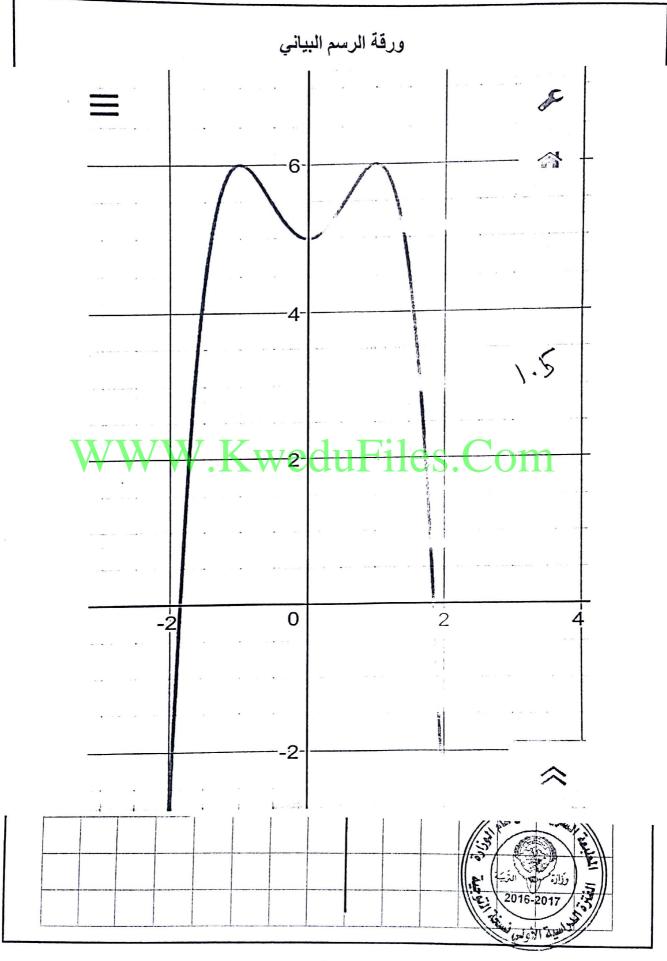
$$4 - 12 x^2 = 0 \Rightarrow 12 x^2 = 4 \Rightarrow x^2 = \frac{4}{12} \Rightarrow x^2 = \frac{1}{3} \Rightarrow x = \frac{\pm 1}{\sqrt{3}}$$

$$x = \frac{1}{\sqrt{3}} \Rightarrow f\left(\frac{1}{\sqrt{3}}\right) = 2\left(\frac{1}{\sqrt{3}}\right)^2 - \left(\frac{1}{\sqrt{3}}\right)^4 + 5 = 5\frac{5}{9}$$
 [0.5]

$$x = -\frac{1}{\sqrt{3}} \Rightarrow f\left(-\frac{1}{\sqrt{3}}\right) = 2\left(-\frac{1}{\sqrt{3}}\right)^2 - \left(-\frac{1}{\sqrt{3}}\right)^4 + 5 = 5\frac{5}{9}$$
 [0.5]

-∞		$\frac{-1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$ ∞	
الفتر ات	$\left(-\infty,\frac{-1}{\sqrt{3}}\right)$	$(\frac{-1}{\sqrt{3}},\frac{1}{\sqrt{3}})$	(1/√3,∞)	ra ea
إشارة "f	+ + +		+ + +	[1.5]
بيان الدالة ٢	بكر مقعر لأعلى	مقعر لاسفل	ب يقعر لأعلى	

من الجدول نج<mark>د أ</mark>زَ


بیان الدالهٔ
$$f$$
 مقعر للأعلى علی الفترتین $(\infty, \frac{1}{\sqrt{3}})$, $(\frac{1}{\sqrt{3}}, \infty)$ ،

بيان الدالة
$$f$$
 مقعر للأسفل على الفترة $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

النقطة
$$(-\frac{1}{\sqrt{3}}, 5\frac{5}{9})$$
 نقطة انعطاف

النقطة
$$(\frac{1}{\sqrt{3}}, 5\frac{5}{9})$$
 نقطة انعطاف

السؤال الرابع

$$x = 0$$
 عند $f(x) = \frac{3x-4}{x+2}$: f عند $f(x) = \frac{3x-4}{x+2}$: f عند $f(x) = \frac{3x-4}{x+2}$ (a)

الحل:

$$f(0) = \frac{0-4}{0+2} = \frac{-4}{2} = -2$$
 [0.5]

$$f'(x) = \frac{(x+2) \cdot (3x-4)' - (x+2)' \cdot (3x-4)}{(x+2)^2}$$

$$= \frac{(x+2) \cdot (3) - (3x-4) \cdot (1)}{(x+2)^2}$$

$$= \frac{10}{(x+2)^2}$$
[1]

WWW.KweduFiles.Com ميل المماس

$$m = f'(a) = f'(0) = \frac{10}{(0+2)^2} = \frac{10}{4} = \frac{5}{2}$$
 [1.5]

فتكون معادلة المماس هي

$$y - f(a) = f'(a) (x - a)$$
 [1]

$$y - (-2) = \frac{5}{2} (x - 0)$$

$$2y + 4 = 5x \tag{0.5}$$

$$2y - 5x + 4 = 0$$

تابع السؤال الرابع:

(b) يعتقد مدير شركة أن متوسط رواتب المستخدمين لديه 290 دينار ، فإذا أخذت عينة عشوائية من $\overline{x} = 283$ دينار وإنحرافها المعياري 32 = 5 دينار . فهل يمكن الإعتماد على هذه العينة لتأكيد ما إفترضه بأستخدام مستوى ثقة 95 % (علما بأن المجتمع يتبع التوزيع الطبيعي) (6 درجات)

الحل:

(3)

$$S = 32 \cdot n = 10 \cdot \bar{x} = 283$$

صياغة الفروض الإحصائية

 $H_0: \mu = 290$ مقابل $H_1: \mu \neq 290$ [0.5]

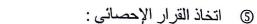
② نوجد المقياس الإحصائي

 $\dot{x} = \frac{\bar{x} - \mu}{\frac{S}{2}} = \frac{283 - 290}{32} \approx -0.6917$ $\dot{z} = \frac{1.5}{32} = \frac{1.5}{32}$

: در جات الحرية :

$$n-1=10-1=9$$
 [0.5]

مستوى الثقة % 95


$$\therefore 1 - \alpha = 0.95$$

$$\therefore \ \alpha = 0.05 \ \Rightarrow \frac{\alpha}{2} = 0.025$$
 [0.5]

من جدول توزیع t نجد:

$$t_{\frac{\alpha}{2}} = t_{0.025} = 2.262$$
 [0.5]

$$(-t_{\frac{\alpha}{2}}, t_{\frac{\alpha}{2}}) = (-2.262, 2.262)$$
 [1] : منطقة القبول ($-t_{\frac{\alpha}{2}}, t_{\frac{\alpha}{2}}$

القسم الثاني (الأسئلة الموضوعية):

	ي البنود $(2-1)$ ظلل في جدول الإجابة (a) إذا كانت العبارة صحيحة	أولا: فم
	و (b) إذا كانت العبارة خاطنة	
	[-1,3] اذا كانت الدالة f متصلة عند g ، $[-3,1]$ عند $f+g$ دالة متصلة عند $f+g$ فإن $f+g$	(1)
	$f'(1) = \frac{1}{4}$ فإن $f(x) = \sqrt{x+3}$: f فإن	(2)
سحيحة	لى البنود (10 — 3) لكل بند أربع إختيارات واحد منها فقط صحيح اختر الإجابة الد في جدول الإجابة الرمز الدال على الإجابة الصحيحة :	
(3)	$\lim_{x\to 3^-} \frac{5}{(x-3)} =$	
	$(a) \infty$ $(b) -\infty$	
	(c) 5 (d) 0	
	اذر كانت WWW.KweduFiles.Com	(4)
	$\lim_{x\to\infty}\frac{ax^2+bx+3}{2x+5}=3$	
	$\stackrel{x o \infty}{=} 2x + 5$: هما a , b فإن قيم الثابتين a , b	
	(a) $a = 0$, $b = 6$ (b) $a = 0$, $b = -6$	
	(c) $a = 0$, $b = 2$ (d) $a = 0$, $b = -2$	
	الداله المتصلة عند $x=2$ فيما يلي هي	(5)
	$f(x) = \sqrt{x-2}$ (b) $g(x) = x-2 $	
(c) h	$(x) = \frac{1}{x-2}$ $(b) k(x) = \frac{x-2}{x^2-4}$	
	إذا كانت الدالة $f'\left(0 ight)=3x+tan\ x$ و فإن أيا تساوي	(6)
(a)	0 (b) 1	
(c) :	3 (d) 4	

المريان المرياني المرياني	
$f(x) = \left x^2 - 1\right : f$ دالة	(7)
قيمة صغرى مطلقة (b) قيمة عظمى مطلقة (a)	
نقطتان حرجتان فقط (c) لیس أیا مما سبق (c)	
f فإن الدالة $f'(x)=-3x:\ f'$ فإن الدالة	(8)
$(0,\infty)$ متزایدة علی الفترة (a)	
متزایدة علی مجال تعریفها (b)	
$(0,\infty)$ متزايدة على الفترة $(\infty,0)$ ، متناقصة على الفترة (c)	
$(-\infty,0)$ متناقصة على الفترة (d)	0
نلدالة $f(x) = \sqrt[3]{x-1}$ مماس رأسي معادلته : $f(x) = \sqrt[3]{x-1}$: $f($	(9)
(c) y = 0 (d) y = 1	
في دراسة لمجتمع إحصائي تبين أن متوسطه الحسابي 125 $\mu=125$ أخذت عينة من هذا المجتمع حجمها $\pi=36$ فتبين أن متوسطهما الحسابي $\pi=36$ إذا كان المقياس الإحصائي $\pi=36$ فإن الإنحراف المعياري σ تحت مستوى ثقة $\pi=3.125$ يساوي	(10)
(a) - 9.6 $(b) 6.9$	
(c) 9.6 (d) -6.9	

إنتهت الأسئلة ،،،

ä	الإجاب	جدول	<u> </u>	
(1)	(a)	<i>(b)</i>	(c)	(d)
(2)	(a)	<i>(b)</i>	(c)	(d)

الدرجة : × 1 =

(3)	(a)	(b)	(c)	(d)
(4)	(a)	<i>(b)</i>	(c)	(d)
(5)	(a)	(b)	(c)	(d)
(6)	(a)	<i>(b)</i>	(c)	(\underline{al})
(7)	(a)	<i>(b)</i>	(c)	(d)
(8)	(a)	<i>(b)</i>	(c)	(d)
(9)	(a)	(b)	(c)	(d)
(10)	(a)	(b)	(c)	(d)

V W W.KweduFiles.Com

الدرجة : × 1.5 =

 :	الدرجة

14

قوانين الإحصاء

$$Z_{\frac{\alpha}{2}} = Z_{\frac{1-\alpha}{2}}$$
 ; $-Z_{\frac{\alpha}{2}} = -Z_{\frac{1-\alpha}{2}}$ (الخطأ المعياري للمجتمع (هامش الخطأ - توزيع طبيعي) $Z_{\frac{\alpha}{2}} = Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$ (هامش الخطأ - توزيع طبيعي) $Z_{\frac{\alpha}{2}} = I_{1-\frac{\alpha}{2}}$ (النوزيع المحاليي المحاليي الخطأ - توزيع الانحراف المعياري $Z_{\frac{\alpha}{2}} = I_{1-\frac{\alpha}{2}}$ (هامش الخطأ - توزيع I الانحراف المعياري $Z_{\frac{\alpha}{2}} = I_{1-\frac{\alpha}{2}}$ (المقياس الإحصائي - توزيع طبيعي) $Z_{\frac{\alpha}{2}} = \frac{\overline{X} - \mu}{\sqrt{n}}$ (هامقياس الإحصائي - توزيع طبيعي) $Z_{\frac{\alpha}{2}} = \frac{\overline{X} - \mu}{\sqrt{n}}$ (المقياس الإحصائي - توزيع $Z_{\frac{\alpha}{2}} = I_{1-\frac{\alpha}{2}}$ (المقياس الاحصائي - توزيع $Z_{\frac{\alpha}{2}} = I_{1-\frac{\alpha}{2}}$