

التجربة العملية (1):

م فكرة النشاط العولي: تصنيف المركبات الى (الكتروليتية قوية و الكتروليتية ضعيفة و غير الكتروليتية)

 $\stackrel{\checkmark}{\sim}$ التجربة العولية: لديك ثلاث مواد (A) و (B) و (B) موضوعة أمامك و معها أدوات التجربة

سُمُ الوطلوب: قُم بإجراء التجربة و سجل مُشاهداتك في الجدول التالي:

قراءة الجهاز	المحلول
WWWo.Kwee	luFilea.Com
340	В
3200	С

سَنِي النتائج: 1 ﴾ المادة الإلكتروليتية هي: ___ B ____، ____

2 ﴾ المادة غير الإلكتروليتية هي: ____ A

التجربة العملية (2):

للم فكرة النشاط العهلي: استخدام قواعد الذوبانية لتوقع تكون الراسب

للمركبات التالية: لديك محاليل للمركبات التالية:

($AgNO_3$ و ($CaCl_2$) و (Na_2CO_3) و ($CaCl_2$) و ($CaCl_2$) و ($CaCl_2$

الى أنابيب اختبار تحتوي المحاليل Na_2CO_3 الى أنابيب اختبار تحتوي المحاليل المطلوب: قُم بإضافة القليل من محلول كربونات الصوديوم

غ المركبات المتكونة (المترسبة و غير المترسبة)	السابقة ، و قُم بتسجيل ما تشاهده و اكتُب صير
---	--

نيترات الفضة AgNO ₃	كلوريد الكالسيوم CaCl ₂	
راسب بني مصفر	.Kwedul	المشاهدة عند إضافة محلول كربونات الصوديوم (Na ₂ CO ₃)
Ag_2CO_3	CaCO ₃	صيغة المادة المُترسبة
NaNO ₃	NaC1	درجة المادة غير المُترسبة

كُن اكتُب المعادلة الايونية النهائية لتفاعل محلول كلوريد الكالسيوم مع محلول كربونات الصوديوم

$$Ca^{2+}_{(aq)}$$
 + $CO_3^{2-}_{(aq)}$ \rightarrow $CaCO_{3(s)} \downarrow$

كُنُ اكتُب المعادلة الأيونية النهائية لتفاعل محلول نيترات الفضة مع محلول كربونات الصوديوم

$$2Ag^{+}_{(aq)}$$
 + $CO_3^{2-}_{(aq)}$ \rightarrow $Ag_2CO_{3(s)}$

التجرية العملية (3):

→ فكرة النشاط العملي: تحضيرُ محلول و استخدامُ النتائج التجريبية لحساب النسبة المئوية الكتلية لمكونات المحلول

سي الدوات : لديك كأس زجاجية ، ميزان ، قضيب زجاجي ، ماء مُقطر ، كربونات الصوديوم ، دورق قياسي سعة (500 mL)

نين خطوات التجربة:

- 1 ﴾ استخدم الميزان لوزن ($9.75~{
 m g}$) من كربونات الصوديوم ($106~{
 m Na}_2{
 m CO}_3=10$) في كأس زجاجي نظيف
- 2 ﴾ أضف كمية من الماء المقطر الى الكأس الزجاجي الذي وضعت فيه كربونات الصوديوم و حرك المزيج حتى يذوب تماماً
 - 3 ﴾ زن الدورق القياسي وهو جاف و نظيف
- 4 € انقل المحلول الموجود في الكأس الزجاجي الى الدورق القياسي باستخدام القمع و قم بغسل الكأس الزجاجي عدة مرات بالماء المقطر ثم انقل الغسيل الى الدورق القياسي
 - - 6 ﴾ زن الدورق القياسي و ما يحتويه من محلول ، ثم أغلقه و رجه جيداً
 - 7 ﴾ سجل النتائج في الجدول التالى:

125.12	كتلة الدورق القياسي الجاف
629.95	كتلة الدورق القياسي مع المحلول
504.08	كتلة المحلول

8 ﴾ احسب النسبة المئوية الكتلية لكربونات الصوديوم من خلال العلاقة:

$$% 1.93 = 100 X \frac{9.75}{504.08} = 100 X$$
 النسبة المئوية الكتلية