

كل ما يحتاجه الطالب في جميع الصفوف من أوراق عمل واختبارات ومذكرات، يجده هنا في الروابط التالية لأفضل مواقع تعليمي كويتي 100 % ، للدخول إلى المجموعة أو القناة ما عليك سوى الضغط على اسمها

تطبيق المناهج الكويتية

القناة الرسمية على تلغرام

الصفحة الرسمية على الفيسبوك

قناة روابط تعليمية شاملة لجميع الصفوف

مجموعات الفيسبوك	صفحات الفيسبوك	قنوات التلغرام	مجموعات التلغرام
الصيف الأول	الصف الأول	الصف الأول	الصف الأول
الصف الثاني	الصف الثاني	الصف الثاني	الصف الثاني
الصف الثالث	الصف الثالث	الصف الثالث	الصف الثالث
الصف الرابع	الصف الرابع	الصف الرابع	الصف الرابع
الصف الخامس	الصف الخامس	الصف الخامس	الصف الخامس
الصف السادس	الصف السادس	الصف السادس	الصف السادس
الصف السابع	الصف السابع	الصف السابع	الصف السابع
الصف الثامن	الصف الثامن	الصف الثامن	الصف الثامن
الصف التاسع	الصف التاسع	الصف التاسع	الصف التاسع
الصف العاشر	الصف العاشر	الصف العاشر	الصف العاشر
الصف 11 أدبي	<u>صف 11</u> أدبي	<u>صف 11أدبي</u>	<u>صف11أدبي</u>
الصف 11 علمي	<u>صف 11 علمي</u>	<u>صف 11علمي</u>	<u>صف 11علمي</u>
الصف 12 أدبي	<u>صف 12</u> أدبي	<u>صف 12أدبي</u>	<u>صف12 أدبي</u>
الصف 12 علمي	صف 12 علمي	صف12علمي	<u>صف12علمی</u>

مدرسون في الكويت روابط واتساب ويتر حساب الانستغرام حساب تويتر

تكلّم مع البوت التعليمي الأول من نوعه والذي يسمح للطلبة باختيار الصف والفصل والمادة ويرد له البوت الملفات المناسبة

دولة الكويت وزارة التربية

امتحان نهاية الفترة الدراسية الرابعة للصف الثاني عشر للعام الدراسي ٢٠١٤/٢٠١ م المجال الدراسي: الرياضيات والإحصاء للقسم الأدبي

أولا: الأسئلة المقالية أجب عن الأسئلة التالية موضحا خطوات الحل في كل منها:

السوال الأول:

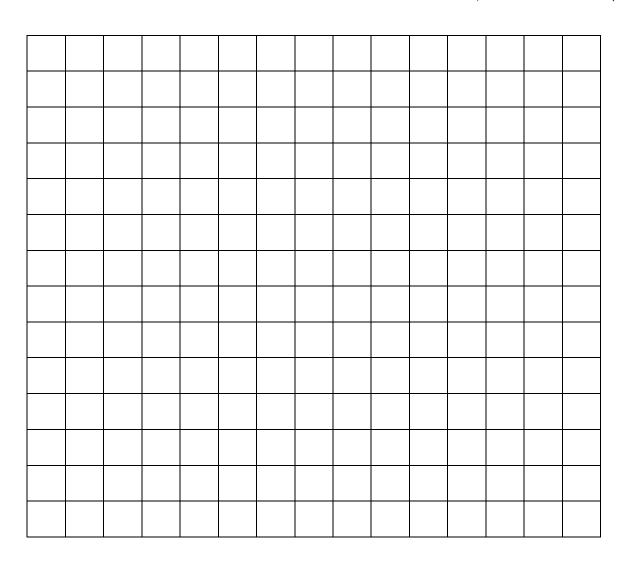
أ) أخذت عينة حجمها ٩ من مجتمع طبيعي ط (μ ، 0) و كان المتوسط الحسابي للعينه 0 أوجد فترة الثقة للمعلمة المجهولة μ بثقة قدرها 0 ثم فسرها علما بأن المجتمع يتبع توزيعا طبيعيا μ

```
ب) أخذت عينة من ٢٥ طالب من إحدى المدارس فوجد أن متوسط أطوالهم هو ٥٥ اسم ، فإذا كان الإنحراف المعيارى للعينه هو ٥ سم إختبر الفرض \mu=\mu ١٦٠ عند مستوى معنوية ٥٠،٠ ، علما بأن العينة تتبع التوزيع الطبيعى ٠ ( ٦ درجات )
```

السؤال الثاني:

فيما يلي بيان بدرجات ستة طلاب في مادتي الرياضيات و الفيزياء حيث كانت النهاية العظمي ٢٠ درجة

1	٩	10	17	١٣	٨	١.	درجة الرياضيات (س)
۲	•	١٦	١٤	1 7	٦	11	درجة الفيزياء (ص)


- ١) أوجد معامل الارتباط ، وحدد نوع العلاقه
- ٢) أوجد معادلة الانحدار الخطي لقيم ص/س

السؤال الثالث:

الجدول التالي يبين قيم ظاهرة معينة خلال ٧ سنوات في الفترة من ١٩٩٥ م إلى ٢٠٠١ م :

۲١	۲	1999	1991	1997	1997	1990	السنة
70	١٩	10	١.	٨	٥	٣	قيمة الظاهرة

- ١) مثل البيانات السابقة بالسلسلة الزمنية .
 - ٢) بين الاتجاه العام للسلسلة الزمنية .

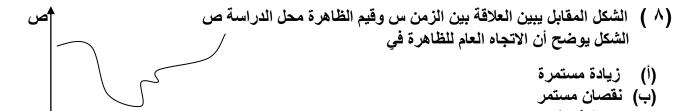
ثانيا: الأسئلة الموضوعية

في البنود من (١)إلى (٤) ظلل في ورقة الإجابة (أ) إذا كانت العبارة صحيحة و (ب) إذا كانت العبارة خاطئة :

- (١) التغيرات الموسمية للسلسلة الزمنية هي تغيرات تتكرر خلال فترات زمنية مدة كل منها أكثر من سنة
 - (٢) مستوى المعنوية يطلق عليه أحيانا مستوى الدلالة (وهو المكمل لدرجة الثقة) .
 - (٣) إذا كان معامل الارتباط بين متغيرين ر = ١٠ كان الارتباط بينهما تاما .
 - (٤) توزيع ت له معلمه واحده هي درجات الحريه (ن + ۱) حيث ن هي حجم العينه .

ثانيا : في البنود من (٥-٨) لكل بند أربع إجابات اختر الإجابة الصحيحة تم ظلل دائرة الرمز الدال على الإجابة الصحيحة :

(٥) إذا كانت قيمة الاختبار الإحصائي = ٥ والقيمة الجدولية ت٥٠٠٠. = ٢٠٠٦٤ فان العبارة الصحيحة فيما يلي

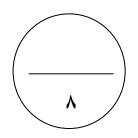

قبول فرض البديل	Ļ	قبول فرض العدم	١
المعلومات غير كافيه لإتخاذ القرار	7	ح رفض الفرض البديل	=

(٦) مجتمع ط (μ ، ١٦) اختيرت منه عينة عشوائية حجمها ٦٤ ومتوسطها الحسابي $\overline{m} = 7$ إذا كان فرض العدم ف μ = μ فإن المقياس الإحصائي للاختبار ق

1,97	Ļ	•	•	١
٠,.٢٥	7	۲	-	3

(۷) عند رسم الشكل الانتشاري لدراسة العلاقة بين متغيرين إذا وقعت جميع النقاط على خط مستقيم فإن قيمة ر (معامل الارتباط بين المتغيرين) هي

صفر	ŀ	1	١
١ أو -١	7	1-	3


س

- (أ) زيادة مستمرة
- (ب) نقصان مستمر
- (جـ) زيادة ثم نقصان
- (د) نقصان ثم زیادة

إجابة الأسئلة الموضوعية

		Ļ	Í	١
		Ţ	Í	۲
		Ļ	Í	٣
		ŗ	Í	£
7	٦	J •	Í	0
7	ق	J •	Í	, ,
۲	٦	ŗ	Í	٧
د	٤	ŗ	Í	٨

درجة الموضوعي

التوقيع: المصحح: الاسم:

التوقيع: المراجع: الاسم:

تمنياتنا لكم بالتوفيق ،،،،

جدول المساحة تحت منحنى التوزيع الطبيعي المعياري

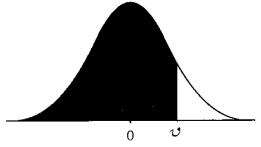


Table1: Areas under the normal curve.

z أو ق	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	0018	.0017	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0800.	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0722	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	. 1 170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247

تابع/ جدول المساحة تحت منحنى التوزيع الطبيعي المعياري

	200	04	02	02	0.4	ΛΕ.	06	0.7	no	
z أو ن	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.5	.7257	.7291	.7324	.7357	.7389	.7422	.7123	.7486	.7190	.7549
0.6		.7611				.7734		.7400		.7852
	.7580		.7642	.7673	.7704		.7764		.7823	
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
						.0200	.02/0		10000	10070
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1,9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
2.0	.0001	.0002	.0002	.0000	.0004	.0004	.0000	.0000	.0000	.5500
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
•	-		-		-	-	-	-	-	

Table	Distribution						
	Confidence						
d.f	intervals	50%	80%	90%	95%	98%	99%
	α	0.25	0.10	0.05	0.025	0.01	0.005
1		1.000	3.078	6.314	12.706	31.821	63.657
2		.816	1.886	2.920	4.303	6.965	9.925
3		.765	1.638	2.353	3.182	4.541	5.841
4		.741	1.533	2.132	2.776	3.747	4.604
5		.727	1.476	2.015	2.571	3.365	4.032
6		.718	1.440	1.943	2.447	3.143	3.707
7		.711	1.415	1.895	2.365	2.998	3.499
8		.706	1.397	1.860	2.306	2.896	3.355
9		.703	1.383	1.833	2.626	2.821	3.250
10		.700	1.372	1.812	2.228	2.764	3.169
11		.697	1.363	1.796	2.201	2.718	3.106
12		.695	1.356	1.782	2.179	2.681	3.055
13		.694	1.350	1.771	2.160	2.650	3.012
14		.692	1.345	1.761	2.145	2.624	2.977
15		.691	1.341	1.753	2.131	2.602	2.947
16		.690	1.337	1.746	2.120	2.583	2.921
17		.689	1.333	1.740	2.110	2.567	2.898
18		.688	1.330	1.734	2.101	2.552	2.878
19		.688	1.328	1.729	2.093	2.539	2.861
20		.687	1.325	1.725	2.086	2.528	2.845
21		.686	1.323	1.721	2.080	2.518	2.831
22		.686	1.321	1.717	2.074	2.508	2.819
23		.685	1.319	1.714	2.069	2.500	2.807
24		.685	1.318	1.711	2.064	2.492	2.797
25		.684	1.316	1.708	2.060	2.485	2.787
26		.684	1.315	1.706	2.056	2.479	2.779
27		.684	1.314	1.703	2.052	2.473	2.771
28		.683	1.313	1.701	2.048	2.467	2.763
$(z) \infty$.674	1.282	1.645	1.960	2.326	2.576
	(One tail			Tow tails		
			$\bigwedge \int_{\alpha}^{\text{Area}} \alpha$	$\left(\begin{array}{c} \text{Area} \\ \frac{\alpha}{2} \end{array}\right)$		Area $\frac{\alpha}{2}$	
	/_			-t		+ t	

قواتين الإحصاء للصف الثاني عشر الموحد

فترة الثقة يمكن أن تأخذ الحد الأشكال التالية

$$(\frac{6}{\ddot{0}} \times \frac{\ddot{0}}{\ddot{0}} \times \frac{\ddot{0}}{\ddot{0}} \times \frac{\ddot{0}}{\ddot{0}} \times \frac{\ddot{0}}{\ddot{0}} \times \frac{\ddot{0}}{\ddot{0}} \times \frac{\ddot{0}}{\ddot{0}})$$

$$(\frac{\varepsilon}{|u|} \times \frac{\alpha}{r} + \frac{\omega}{|u|} \times \frac{\varepsilon}{|u|} \times \frac{\alpha}{r} = -\frac{\omega}{|u|})$$

$$\frac{\mu - \omega}{6} = 6$$

 $\frac{\mu - \overline{\mu}}{0}$ ق $\frac{\mu - \overline{\mu}}{0}$ ق $\frac{6}{10}$

$$\frac{\mu - \overline{u}}{\underline{\varepsilon}} = \underline{0}$$