

الملف مذكرة إثرائية محلولة من عُلا

موقع المناهج ← المناهج الكويتية ← الصف العاشر ← كيمياء ← الفصل الثاني

	ماعي بحسب الصف العاشر	روابط مواقع التواصل الاجتم	
F	T	CULINITEL	
	لعاشر على تلغرام	روابط مواد الصف ا	
الرياضيات	<u>اللغة الانجليزية</u>	<u>اللغة العربية</u>	<u>التربية الاسلامية</u>

ماشر والمادة كيمياء في الفصل الثاني	المزيد من الملفات بحسب الصف ال
تعاريف وتعاليل	1
بنك اسئلة	2
مذكرة كيمياء	3
مذكرة كيمياء فصل ثاني	4
مذكرة الورقة التقويمية	5

UULA.COM & 2021-2022

الـكـورس الثاني

10

UULA.COM & 2021-2022

شلون تتفوق بدراستك

طريقة علا المتكاملة للدراسة تشمل الاستفادة من المذكرة و الفيديوهات و الاختبارات

.

اشترك بالمادة احرص على تفعيل اشتراكك عشان تستفيد كثر ما تقدر

10.ch. 02.5 \ 0.6 ch

000000

اکتشف عالم التفوق مع باقات علا ادرس جمیع مواد مرحلتك باشتراك واحد بسعر خیالی

أقوى مذكرة صارت الحين أقوى و أقوى مع خاصية **المنقذ** للمساعدة الفورية

شنو المنقذ ؟ امسح الباركود بكاميرا تلفونك وتعرف على طريقة استخدام المنقد الناهج الكوينية

شنو فايدة هالخاصية ؟ أول ما تحتاج مساعدة بالمادة , المنقذ بينقذك .

امسح الباركود بكاميرا التلفون أو اضغط عليه إذا كنت فاتح المذكرة من جهازك و يطلع لك فيديو الشرح.

الكيمياء **قائمة المحتوى**

01

الوحدة الرابعة : التفاعلات الكيميائية والكيمياء الكمية

- 5 التفاعلات الكيميائية والمعادلات الكيميائية
 - 17 التفاعلات المتجانسة و غير المتجانسة
 - **20** التفاعلات الكيميائية بحسب نوعها
- 24 الكتلة المولية الذرية والكتلة المولية الجزيئية والكتلة المولية
 - **41** النسب المئوية لتركيب المكونات

الوحدة الرابعة : التفاعلات الكيميائية والكيمياء الكمية فاعلات الكيميائية والمعادلات الكيميائىة

التفاعل الكيميائي

تغيرات فيزيائية :

كسر الزحاج, تبخر الماء, تحمد الحليب لصناعة الآيس كريم

تغيرات كيميائية :

صدأ الحديد , تعفن الخبز , حرق الخشب , مضغ الطعام و هضمه, عملية البناء الضوئي.

أمثلة على التفاعلات الكيميائية :

- هضم الطعام والاستفادة منه
- تصنيع الأدوية والألياف الصناعية والأسمدة
 - حفظ الأغذية
 - تحويل النفط إلى أنواع الوقود
 - صناعة المواد العديدة للملابس و المنازل .
- الوقود يحترق فى محرك السيارة لتوليد طاقة تحركها
- غذاء النبات ينتج من عملية البناء الضوئى بتفاعل ثانى أكسيد الكربون والماء .

هناك أمور تدل على حدوث التفاعل الكيميائي (دلالات التفاعل الكيميائي) :

أمثلة	دليل التفاعل
يتصاعد غاز الهيدروجين عند وضع قطعة خارصين في محلول حمض الهيدروكلوريك المخفف نتيجة التفاعل.	تصاعد غاز
يختفي لون سائل البروم البنـي المحمـر عنـد إضـافته إلى الهكسين (مركب عضوي) .	اختفاء اللون
يظهر اللون الأزرق عند اضافة محلول اليود إلى النشا.	ظهور لون جديد
ترتفع درجة حرارة المحلول الناتج من اضافة NaOH و HCl إلى بعضهما في كأس واحدة من إضافة HCl	التغير في درجة الحرارة
يترســب كلوريــد الفضــة عنــد تفاعــل محلــول نيتــرات الفضة ,AgNO مع محلول كلوريدالصوديوم NaCl .	ظهور راسب
يسري التيار الكهربائي ليضيء مصباحاً صغيراً , إذا ما وصـل قطبـاه بقطبـين نحـاس و خارصـين مغموسـين بمحلـول حمـض الكبريتيـك المخفـف نتيجـة للتفاعـل الحاصل .	سريان التيار الكهربائي
يتغير لون صبغة تباع الشمس عنـد إضـافة نقـط منــه إلـى محلول HCI أو محلول NaOH المخفف.	تغير لون كاشف كيميائي
يحترق شريط المغنيسيوم عنـد إشـعاله فـي الهـواء الجوي مظهراً وميضاً نتيجة التفاعل .	ظهور ضوء أو شرارة

هو تغير في صفات المواد المتفاعلة وظهور صفات جديدة في المواد الناتجة

التفاعل الكيميائي

كسر روابط المواد المتفاعلة وتكوين روابط جديدة في المواد الناتجة

كما في احتراق الميثان مع الأكسجين : CH₄ + 20₂ → CO₂ + 2H₂O

المعادلة الكتابية :

س اكتب المعادلة الكتابية التي تمثل صدأ الحديد , أو تفاعل الحديد مع الأكسجين لتكوين أكسيد الحديد (III) (الصدأ) . حديد + أكسجين ^{هواء رطب} أكسيد حديد (III)

اكتب المعادلات الكتابية للتفاعلات الكيميائية التالية :

س يمكن الحصول على النحاس النقي بتسخين كبريتيد النحاس (**II**) في وجود الهواء الجوي, ويتكون أيضا غاز ثاني أكسيد الكبريت في هذا التفاعل .

كبريتيد النحاس ا + أكسجين ____تسخين ___ نحاس نقى + ثائي أكسيد الكبريت

س عند تسخين كربونات الصوديوم الهيدروجينية (بيكربونات الصوديوم) , تتفكك مكونة كربونات الصوديوم , وثاني أكسيد الكربون والماء .

كربونات الصوديوم الهيدروجينية تسخين

كربونات الصوديوم + ثاني أكسيد الكريون + الماء

س التفاعل بين غاز الهيدروجين وغاز الأكسجين مصحوب بانفجار و ينتج عنه ماء .

هيدروجين + أكسجين — حرارة + ماء

س علل: لا يمكن استخدام المعادلة الكتابية

ممكن أن يظهر السؤال في صيغة اخرى: علل : تستخدم المعادلة الهيكلية بدلا من الكتابية

لأنها غير كافية للوصف الدقيق للمتفاعلات و النواتج

س حدد المواد المتفاعلة والمواد الناتجة في كل من التفاعلات التالية :

 تكون غاز الهيدروجين وهيدروكسيد الصوديوم عند إلقاء الصوديوم في الماء .

المتفاعلات : الصوديوم و الماء النواتج : غاز الهيدروجين و هيدروكسيد الصوديوم

 يتفاعل ثاني أكسيد الكربون والماء في عملية التركيب الضوئي ليتكون غاز الأكسجين والجلوكوز .

> المتفاعلات : ثاني أكسيد الكربون و الماء النواتج : غاز الاكسجين و الجلوكوز

س اكتب المعادلة الهيكلية لتفاعل تكوين الصدأ .

 $Fe + O_2 \rightarrow Fe_2O_3$ مونى نواتج متفاعلات المناهج الكويتية ما almanahj.com/kw

المعادلة الهيكلية

هي معادلة كيميائية تعبر عن الصيغ الكيميائية الصحيحة للمواد المتفاعلة و الناتجة بدون الإشارة إلى الكميات النسبية للمواد المتفاعلة و الناتجة .

UULA

الحالة الفيزيائية للمتفاعلات والنواتج :

المادة الصلبة (**s**) , المادة السائلة (**ℓ**) , الغاز (**g**) , المحلول المائي (**aq**) .

س اكتب المعادلة الهيكلية لصدأ الحديد :

 $Fe_{(s)} + O_{2(g)} \longrightarrow Fe_2O_{3(s)}$

العامل الحفاز

مادة تغير من سرعة التفاعل , ولكنها لا تشترك فيه

صح أم خطأ:

س العامل الحفاز لا يعتبر من المواد المتفاعلة أو الناتجة عن التفاعل الكيميائي صح

س علل : يكتب الصيغة الكيميائية الخاصة به فوق السهم في المعادلة الكيميائية.

لأن العامل الحفاز لا يعتبر من المواد المتفاعلة أو الناتجة عن التفاعل الكيميائي

س اكتب المعادلة الهيكليـة لتفكـك المحلـول المـائي لفـوق أكسـيد الهيـدروجين باستخدام ثاني أكسيد المنجنيز (**IV**) كعامل حفاز .

 $H_2O_{2(aq)} \xrightarrow{MnO_2} H_2O_{(I)} + O_{2(g)}$

يستخدم ثاني أكسيد المنجنيز لزيادة سرعة تفكك المحلول المائي لفوق أكسيد الهيدروجين .

ملاحظة :

إذا استخدمت الحرارة , أكتب رمزها (۵) فوق السهم

س اكتب المعادلة الهيكلية لتفاعل كربونات الصوديوم الهيدروجينية (بيكربونات صوديوم) مع حمض الهيدروكلوريك لتكوين محلول مائي من كلوريد الصوديوم والماء وغاز ثاني أكسيد الكربون .

 $NaHCO_{3(s)} + HCI_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(I)} + CO_{2(g)}$

س اكتب المعادلة الهيكلية لاحتراق الكبريت في الأكسجين مكونا ثاني أكسيد الكبريت .

$$S_{(s)}+O_{2(g)} \xrightarrow{\Delta} SO_{2(g)}$$

س اكتب المعادلة الهيكلية لتسخين كلورات البوتاسيوم في وجود ثاني أكسيد المنجنيز كعامل حفاز مكونا غاز الأكسجين وكلوريد البوتاسيوم الصلب

 $\begin{array}{ccc} \text{KCIO}_{3(s)} & \xrightarrow{\Delta \text{, } MnO_2} & O_{2(g)} + & \text{KCI}_{(s)} \end{array}$

اكتب تعليقاً يصف التفاعلات التالية :

$\textbf{KOH}_{(aq)} + \ \textbf{H}_2\textbf{SO}_{4(aq)} \longrightarrow \textbf{H}_2\textbf{O}_{(I)} \ + \ \textbf{K}_2\textbf{SO}_{4(aq)} \quad \textbf{\textbf{u}}$

يخلط محلول مائي من هيدروكسيد البوتاسيوم مع محلول مائي من حمض الكبريتيك , فيتكون ماء ومحلول مائى من كبريتات البوتاسيوم .

$Na_{(s)} + H_2O_{(I)} \longrightarrow NaOH_{(aq)} + H_{2(g)}$

عند إضافة الصوديوم الصلب إلى الماء يتكون غاز الهيدروجين ومحلول مائي من هيدروكسيد الصوديوم .

$NH_{3(g)} + O_{2(g)} \xrightarrow{Pt} NO_{(g)} + H_2O_{(g)}$

يتفاعل غاز الامونيا مع غاز الأكسجين في وجود البلاتين كعامل حفاز لينتج غاز أول أكسيد النيتروجين و بخار الماء

$H_2SO_{4(aq)} + BaCl_{2(aq)} \rightarrow BaSO_{4(s)} + HCl_{(aq)}$

يتفاعل محلول حمض الكبريتيك مع محلول كلوريد الباريوم لينتج راسب كبريتات الباريوم ومحلول حمض الهيدروكلوريك

$N_2O_{3(g)} + H_2O_{(I)} \rightarrow HNO_{2(aq)}$

يتفاعل غاز ثلاثى أكسيد ثنائى النيتروجين مع الماء لتكوين محلول حمض النيتروز

وزن المعادلة الكيميائية :

س اكتب المعادلة الكيميائية الموزونة لتفاعل الكربون مع الأكسجين لتكوين أول أكسيد الكربون .

 $\mathbf{2C}_{(s)} + \mathbf{O}_{\mathbf{2}(g)} \longrightarrow \ \mathbf{2CO}_{(g)}$

س اكتب المعادلة الموزونة لتفاعل الهيدروجين والأكسجين لتكوين الماء.

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(I)}$

س اكتب المعادلة الموزونة لتفاعل الألمنيوم مع الأكسجين في الهواء ليكون طبقة رقيقة من أكسيد الألمنيوم تغطي الألمنيوم وتحميه من الأكسدة .

مؤتم $4\text{Al}_{(s)} + 30_{2(g)} \rightarrow 2\text{Al}_2O_{3(s)}$

س اكتب المعادلة الموزونة لغمر سلك من فلز النحاس في محلول مائي من نيترات الفضة , تترسب بلورات الفضة على سلك النحاس .

 $2\text{AgNO}_{3(\text{aq})} + \text{Cu}_{(\text{s})} \rightarrow \text{Cu}(\text{NO}_{3})_{2(\text{aq})} + 2\text{Ag}_{(\text{s})}$

اكتب معادلة كيميائية موزونة من التفاعلات التالية :

س هيدروجين + كبريت ← كبريتيد الهيدروجين

 $H_{2(g)} + S_{(s)} \rightarrow H_2S_{(g)}$

س كلوريد الحديد (Ⅲ) + هيدروكسيد الكالسيوم ← هيدروكسيد الحديد (Ⅲ) + كلوريد الكالسيوم

 $2FeCl_{3(aq)} + 3Ca(OH)_{2(aq)} \rightarrow 2Fe(OH)_{3(aq)} + 3CaCl_{2(aq)}$

ڛ صوديوم + ماء 🔶 هيدروکسيد صوديوم + هيدروجين

 $2Na_{(s)} + 2H_2O_{(l)} \longrightarrow 2NaOH_{(aq)} + H_{2(g)}$

س هيدروكسيد الكالسيوم + حمض الكبريتيك — كبريتات الكالسيوم + ماء

 $Ca(OH)_{2(aq)} + H_2SO_{4(aq)} \rightarrow CaSO_{4(s)} + 2H_2O_{(l)}$

س إمـرار غـاز الكلـور فـي محلـول مـن يوديـد البوتاسـيوم ليتكـون اليـود ومحلول كلوريد البوتاسيوم .

 $\text{Cl}_{2(g)} \ + \ 2\text{Kl}_{(aq)} \ \longrightarrow \ \text{I}_{2(s)} \ + \ 2\text{KCl}_{(aq)}$

س تكون غاز الهيدروجين ومحلول مائي من كلوريد الحديد (**١١**) عند غمر الحديد الفلزى في حمض الهيدروكلوريك .

 $Fe_{(s)} \ + \ 2HCl_{(aq)} \ \longrightarrow \ H_{2(g)} \ _{+} \ FeCl_{2(aq)}$

س تسخين أكسيد الفضة الصلب لتتكون الفضة وغاز الأكسجين .

 $2Ag_2O_{(s)} \longrightarrow 4Ag_{(s) +}O_{2(g)}$

س تتفاعل بلورات اليود مع غاز الكلور ليتكون كلوريد اليود .

مونى مونى ال_{2(s)} → 2\Cl_(s) مونى مونى الكويتية مريد المراجع الكويتية مريد مريد المراجع الكويتية مريد مريد الكالسيوم . س يمكن إنتاج فلز الزئبق بتسخين خليط من كبريتيد الزئبق (۱۱) وأكسيد الكالسيوم .

س يمكن إنتاج قبر الرئبق بتسخين خليط من كبرينيد الرئبق (١١) واكسيد الكالسيوم . يمكـن أن تتكـون أيضـاً نـواتج إضـافية أخـرى مثـل كبريتيـد الكالسـيوم وكبريتـات الكالسيوم .

 $4HgS_{(s)} + 4CaO_{(s)} \rightarrow 4Hg_{(g)} + 3CaS_{(s)} + CaSO_{4(s)}$

زن المعادلات التالية :

 $\mathbf{P}_{(s)} + \mathbf{O}_{2(g)} \longrightarrow \mathbf{P}_4 \mathbf{O}_{10(s)} \quad \mathbf{u}$

 $\mathbf{4P}_{(s)} + \mathbf{5O}_{2(g)} \longrightarrow \mathbf{P}_{4}\mathbf{O}_{10(s)}$

$$CS_{2 (aq)} + CI_{2 (g)} \rightarrow CCI_{4 (aq)} + S_{2}CI_{2 (aq)}$$

+ $3CI_{2 (g)} \rightarrow CCI_{4 (aq)} + S_{2}CI_{2 (aq)}$

 $AgNO_{3 (aq)} + H_2S_{(g)} \rightarrow Ag_2S_{(s)} + HNO_{3 (aq)}$

$$2\text{AgNO}_{3 \text{ (aq)}} + \text{H}_2\text{S}_{\text{ (g)}} \longrightarrow \text{Ag}_2\text{S}_{\text{ (s)}} + 2\text{HNO}_{3 \text{ (aq)}}$$

CS_{2 (aq)}

AI + CuSO₄ \rightarrow AI₂(SO₄)₃ + Cu \square

$$2AI + 3CuSO_4 \rightarrow AI_2(SO_4)_3 + 3Cu$$

 $SO_{2(g)} + O_{2(g)} \rightarrow SO_{3(g)}$

$$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$$

 $Fe(OH)_3 \rightarrow Fe_2O_3 + H_2O$ u

 $2Fe(OH)_3 \rightarrow Fe_2O_3 + 3H_2O$

 $H_2 + Fe_3O_4 \rightarrow Fe + H_2O$ u

 $4H_2 + Fe_3O_4 \rightarrow 3Fe + 4H_2O$

أسئلة على التفاعلات الكيميائية والمعادلات الكيميائية

اكتب بين القوسين الاسم أو المصطلح العلمى الدال على كل مما يلى (

س تغير في صفات المواد المتفاعلة وظهور صفات جديدة في المواد الناتجة. (**التفاعل الكيميائي**)

- س معادلة كيميائية تعبر عن الصيغ الكيميائية الصحيحة للمواد المتفاعلة والناتجة بدون الإشارة إلى الكميات النسبية للمواد المتفاعلة والناتجة. (المعادلة الهيكلية)
 - س مادة تغير من سرعة التفاعل ولكنها لا تشترك فيه . (العامل الحفاز)
 - س ما هي علاقة قانون بقاء الكتلة و وزن المعادلة الكيميائية ؟

عند وزن المعادلة الكيميائية , يكون عدد ذرات المتفاعلات و نوعها يساوي عدد ذرات النواتج ونوعها , فيتحقق قانون بقاء الكتلة

س ما فائدة استخدام العامل الحفاز ؟

لكي يصبح التفاعل أسرع .

اكتب الصيغ والرموز الأخرى لكل مما يلي :

- **س** غاز ثالث أكسيد الكبريت : _____<mark>SO_{3(g)}_</mark>_____
- **س** نيترات البوتاسيوم ذائبة في الماء : ____<u>KNO_{3(aq)} ____</u>
- **س** استخدام الحرارة في تفاعل كيميائي : _____<mark>___</mark>____
 - **س** فلز نحاس : _____Cu_(s)_____
 - **س** سائل زئبق : _____H<u>g______</u>____
 - س کلورید الخارصین کعامل حفاز : ____<mark>ZnCl_</mark>____

أكمل الفراغ :

- **س** يعتبر صدأ الحديد تغير _<u>كيميائي _</u> بينما انصهار الحديد تغير ا<u>كو فيزيائي _</u>
- almanahj.com/kw
 - **س** الصيغة الكيميائية لغاز ثالث أكسيد الكبريت هي ____<u>SO_{3(g)}____</u>
 - س الصيغة الكيميائية Na₂CO₃ لمركب يسمى كربونات الصوديوم _
 - س الصيغة الكيميائية لنيترات البوتاسيوم الذائبة في الماء __<u>(KNO_{3(aq)} ____</u>
- **س** الرمز (**g**) يدل على الحالة ___<u>الغازية __</u> بينما يدل الرمز (**f**) على الحالة __<u>السائلة _</u> والرمز (**s**) على الحالة ___<u>الصلبة _</u> والرمز (aq) يدل على حالة محلول مائي .
- **س** المواد التي تكتب على يمين السهم في المعادلة الكيميائية تسمى المواد ___<mark>الناتجة</mark>____ بينما التي تكتب على يسار السهم في المعادلة الكيميائية تسمى المواد __<mark>المتفاعلة</mark>
 - س يرمز للحرارة في التفاعل الكيميائي بالرمز ______

اختر الإجابة :

لأن صفات المواد المتفاعلة (غاز الأكسجين و الحديد الصلب) تغيرت , وظهرت صفات جديدة في أكسيد الحديد الثلاثي الناتج (الصدأ)

الوحدة الرابعة : التفاعلات الكيميائية والكيمياء الكمية التفاعلات المتجانسة و غير المتجانسة

س تزداد خصوبة الارض الصحر اوية عند حدوث البرق وسقوط المطر

لأن البرق يتسبب في تكوين أكاسيد النيتروجين NO , NO التـي تـذوب فـي ميـاه المطر لتكون الأحماض النيتروجينية HNO₃ , HNO₂ التي تزيد خصوبة التربة .

التفاعلات المتجانسة ;

هي تفاعلات تكون المواد المتفاعلة ٬ والمواد الناتجة من الحالة الفيزيائية نفسها

التفاعلات بين الغازات :

يتفاعل غاز الهيدروجين مع غاز النيتروجين تحت ضغط جـوي ودرجـة حـرارة مـرتفعين , على سطح عامل حفاز صلب من أكسيد الألمنيوم و أكسيد البوتاسيوم .

 $\mathsf{N}_{\mathsf{2}(\mathsf{g})} \ + \ \mathsf{3H}_{\mathsf{2}(\mathsf{g})} \ \xrightarrow{\mathsf{K}_2\mathsf{O} \ g \ \mathsf{AI}_2\mathsf{O}_3} \ \mathsf{2NH}_{\mathsf{3}(\mathsf{g})}$

التفاعلات بين السوائل :

يتفاعل الحمض العضوي مع الكحول, حيث ينتج أستر عضوي وماء $\mathsf{RCOOH}_{()}$ + $\mathsf{ROH}_{()}$ \rightarrow $\mathsf{RCOOR}_{()}$ + $\mathsf{H}_2\mathsf{O}_{()}$

التفاعلات بين الأجسام الصلبة :

عند تسخين خليط من مسحوق زهر الكبريت ومسحوق الحديد إلى أن يتوهج , يسـتمر توهج الخليط توهجا شديدا رغم إبعاد الموقد ويتكون جسم صلب رمادي اللـون يميـل إلى الأسود هو كبريتيد الحديد (١١)

$$\operatorname{Fe}_{(s)}$$
 + $\operatorname{S}_{(s)} \longrightarrow \operatorname{FeS}_{(s)}$

التفاعلات غير المتجانسة :

التفاعلات غير المتجانسة

هي تفاعلات تكون المواد المتفاعلة والمواد الناتجة من حالتين فيزيائيتين أو أكثر .

$$\begin{array}{rcl} \mathsf{Zn}_{(s)} \ + \ \mathsf{2HCI}_{(aq)} \longrightarrow \ \mathsf{ZnCI}_{\mathsf{2}(aq)} \ + \ \mathsf{H}_{\mathsf{2}(g)} \\ & \mathsf{CaCO}_{\mathsf{3}(s)} \ \longrightarrow \ \mathsf{CaO}_{(s)} \ + \ \mathsf{CO}_{\mathsf{2}(g)} \end{array}$$

صنف التفاعلات التالية حسب نوعها :

- س NaCl_(aq) + AgNO_{3(aq)} → AgCl_(s)↓ + NaNO_{3(aq)} نير متجانس
 - س (N_{2(g)} + 2O_{2(g)} → 2NO_{2(g)} متجانس
 - $HCl_{(aq)}$ + $NaOH_{(aq)} \rightarrow NaCl_{(aq)}$ + $H_2O_{(I)}$ س متجانس
 - $Fe_{(s)} + CuSO_{4(aq)} \rightarrow FeSO_{4(aq)} + Cu_{(s)}$ غير متجانس

أسئلة على التفاعلات المتجانسة وغير المتجانسة

اكتب بين القوسين الاسم أو المصطلح العلمي الدال على كل مما يلي: 👰

- س تفاعلات تكون المواد المتفاعلة والمواد الناتجة عنها من الحالة الفيزيائية نفسها (تفاعلات متجانسة)
- س تفاعلات تكون المواد المتفاعلة والمواد الناتجة عنها من حالتين فيزيائيتين أو أكثر . (**تفاعلات غير متجانسة**)

أكمل الفراغ :

- **س** طبقا للحالة الفيزيائية للمواد يعتبر تفاعل غاز النيتروجين مع غاز الهيدروجين لتكوين غاز الأمونيا من التفاعلات _ <u>المتجانسة</u> _
 - **س** طبقا للحالة الفيزيائية للمواد تعتبر تفاعلات الترسيب من التفاعلات ___<mark>غير المتجانسة</mark>___

- **س** طبقا للحالة الفيزيائية للمواد يعتبر تفاعل فلز الصوديوم مع مسحوق الكبريت لتكوين كبريتيد الصوديوم الصلب من التفاعلات المتجانسة ___<mark>بين المواد الصلبة</mark>___
 - س طبقا للحالة الفيزيائية للمواد التفاعل الكيميائي التالي : _____ **غير المتجانسة**____ Zn (_{s)} + 2HCl (_{aq)} → ZnCl_{2(aq)} + H_{2 (g)}

اختر الإجابة الصحيحة :

- **س** عند حدوث تفاعل كيميائي بتسخين برادة الحديد والكبريت الصلب تكون مركب كبريتيد الحديد II الصلب حسب المعادلة التالية $Fe_{(s)} o FeS_{(s)} o FeS_{(s)}$ فوجد أن هذا التفاعل يصنف تحت أسم :
 - التفاعلات غير المتجانسة \odot
 - التفاعلات المتجانسة بين المواد الصلبة
 - التفاعلات المتجانسة بين المواد الغازية
 - التفاعلات المتجانسة بين المواد السوائل

س المعادلة التالية تمثل أحد أنواع التفاعلات وهو : $HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(I)}$

- الأكسدة والاختزال
- تفاعلات تكوین غاز
- تفاعلات بين الأحماض والقواعد (تفاعلات التعادل).
 - تفاعلات الترسيب

علل

س التفاعل $\mathsf{N_{2\,(g)}} \to \mathsf{3H_{2\,(g)}} \to \mathsf{2NH_{3\,(g)}}$ يعتبر من التفاعلات المتجانسة.

لأن الموا<mark>د الم</mark>تفاعلة والمواد الناتجة عنها من الحالة الفيزيائي<mark>ة ن</mark>فسها (جميعها غازات)

س التفاعل $O_{2\,(g)}$ + $2KNO_{2\,(g)}$ + $2KNO_{2\,(g)}$ التفاعلات غير المتجانسة.

لأن المواد المتفاعلة والمواد الناتجة عنها ليسـت مـن الحالـة الفيزيائيـة نفسـها (المتفاعلات صلبة , الأكسجين غاز)

الوحدة الرابعة : التفاعلات الكيميائية والكيمياء الكمية التفاعلات الكيميائية بحسب نوعها

تفاعلات الترسيب :

س متى يحدث الترسيب ؟

عند خلط محلولين مائيين لملحين مختلفين . كاتيون فلز للملح يتحد مع أنيون الملح الآخر مكوناً مركباً أيونياً لا يذوب في الماء .

س اكتب معادلة تفاعل محلول نيترات الفضّة المائي مع محلول كلوريد الصوديوم المائي , ليتكون كلوريد الفضة , وهو ملح لا يذوب في الماء .

 $AgNO_{3(aq)} + NaCI_{(aq)} \rightarrow AgCI_{(s)} + NaNO_{3(aq)}$

 $\mathsf{Ag^+}_{(aq)} + \mathsf{NO}_{3^-(aq)} + \mathsf{Na^+}_{(aq)} + \mathsf{Cl^-}_{(aq)} \longrightarrow \mathsf{AgCl}_{(s)} \downarrow + \mathsf{Na^+}_{(aq)} + \mathsf{NO}_{3^-(aq)}$

الأيونات المتفرجة

هي أيونات لا تشارك أو تتفاعل خلال تفاعل كيميائي

س اكتب المعادلة الأيونية النهائية للتفاعل السابق .

 $Ag^{+}_{(aq)} + CI^{-}_{(aq)} \longrightarrow AgCI_{(s)}$

س حدد الأيونات المتفرجة و اكتـب المعادلـة الأيونيـة النهائيـة الموزونـة للتفـاعلات التالية : (ورور Br_{2(l)} + NaBr_(aq) → Br_{2(l)} + NaCl

- Na⁺ الأيونات المتفرجة : _____
- المعادلة الأيونية النهائية الموزونة :
 Cl_{2(g)} + 2Br⁻_(aq) → Br_{2(l)} + 2Cl⁻_(aq)

- **س** خلط محلولا مائیا من کلورید الحدید (**۱۱۱**) و محلولا مائیا من هیدروکسید البوتاسیوم لتکوین راسب من هیدروکسید الحدید (**۱۱۱**) .
- -----FeCl_{3(aq)} + 3KOH_(aq) → Fe(OH)_{3(s)} + 3KCl_(aq) : المعادلة الهيكلية
- - الأيونات المتفرجة : -----K⁺(ag) Cl⁻(ag)
- المعادلة الأيونية النهائية الموزونة : ___Ee⁺³(aq) → Ee(OH)_{3(s)} ___:

أكمل المعادلات التالية , ثم اكتب المعادلة الأيونية النهائية :

 $2\operatorname{Al}_{(s)} + 3\operatorname{H}_{2}\operatorname{SO}_{4(aq)} \rightarrow 3\operatorname{H}_{2(g)} + - + \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3(aq)} \rightarrow 3\operatorname{H}_{2(g)} + \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3(aq)} \rightarrow 3\operatorname{H}_{2(g)} + \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3(aq)} \rightarrow 3\operatorname{H}_{2(g)} + \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3(aq)} \rightarrow 3\operatorname{H}_{2(g)} + \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3(aq)} \rightarrow \operatorname{Al}_{2}(\operatorname{A}_{2})_{3(aq)} \rightarrow \operatorname{A}_{2}(\operatorname{A}_{2})_{3(aq)} \rightarrow \operatorname{A}_{2}(\operatorname{A}_{2})$

- المعادلة الأيونية :
 almanahi.com/kw
 2Al_(s) + 6H⁺_(aq) + 3SO₄² (aq) → 3 H_{2(g)} + 2Al³⁺_(aq) + 3SO₄² (aq) ---
 - المعادلة الأيونية النهائية الموزونة :
 2Al_(s) + 6H⁺_(aq) → 3 H_{2(g)} + 2Al³⁺_(aq)

$$2 \operatorname{HCl}_{(aq)} + \operatorname{Ba}(OH)_{2(aq)} \rightarrow \underline{2H_2O_{(1)}} + \underline{BaCl}_{2(aq)} - \underline{U}$$

- Indext definition of the second seco
- المعادلة الأيونية النهائية الموزونة :
 2H⁺_(aq) + 2OH⁻_(aq) → 2H₂O₍₊₎
 Li <u>Li ccc</u> rollado (equation)
 Mu_(s) + HCl_(aq) → Li <u>Li ccc</u> rollado (equation)

تفاعلات تكوين الغاز :

علل

س يتم استخدام أزيد الصوديوم في الوسائد الهوائية في السيارات .

- عند حدوث التصادم , يتم اشعال أزيد الصوديوم كهربائيا
 - فيتفكك بشكل متفجر مولداً غاز النيتروجين N₂
- يملا غاز النيتروجين بالتالي كيس مصنوع من البولي اميد (اللدائن) فينـتفخ بسرعة

 $2NaN_{3(s)} \rightarrow 2Na_{(s)} + 3N_{2(g)}$

تفاعلات الأحماض و القواعد (تفاعل التعادل) :

علل

س يتناول بعض الناس مضادات الحموضة .

- تحتـوي مضـادات الحموضـة علـى كربونـات الصـوديوم الهيدروجينيـة, أو هيدروكسيد الألمنيوم, أو هيدروكسيد المغنيسيوم
 - تتفاعلُ هذه المواد القاعدية مع حمض الهيدروكلوريك في المعدة.
 - لتنتج ملح و ماء
 - فتخفف الحرقة أو الحموضة

س اكتب المعادلة الأيونية النهائية لتفاعل حمض الهيدروكلوريك مع محلول هيدروكسيد الصوديوم .

> HCl_(aq) + NaOH_(aq) → NaCl_(aq) + H₂O_(l) : المعادلة الأيونية H⁺_(aq) + Cl⁻_(aq) + Na⁺_(aq) + OH⁻_(aq) → Na⁺_(aq) + Cl⁻_(aq) + H₂O_(l) H⁺_(aq) + OH⁻_(aq) → H₂O_(l) : H⁺_(aq) + OH⁻_(aq) → H₂O_(l)

س اكتب معادلة تفاعل حمض الكبريتيك مع محلول هيدروكسيد الكالسيوم

 $H_2SO_{4(aq)} + Ca(OH)_{2(aq)} \rightarrow CaSO_{4(s)} + 2H_2O_{(I)}$

أسئلة على التفاعلات الكيميائية بحسب نوعها

أكمل نواتج تفاعلات التعادل التالية , ثم اكتب المعادلات الموزونة لها:

 $2 \operatorname{HCl}_{(a\sigma)} + \operatorname{Ca}(OH)_{2(a\sigma)} \rightarrow \underline{2H_2O}_{(l)} + \underline{CaCl}_{2(aq)} + \underline{CaCL}_{$

 $H_2SO_{4(ag)} + 2 NaOH_{(ag)} \rightarrow \underline{2H_2O_{(l)}} + \underline{Na_2SO_{4(ag)}} + \underline{Na_2SO_{4(ag)}}$

س أكتب معادلة توضح تفاعل مضادات الحموضة التالية مع حمض HCI

- هيدروكسيد المغنيسيوم : ____Mg(OH)₂ + <u>2HCI → 2H₂O + MgCI</u>2 _____ : هيدروكسيد المغنيسيوم
- كربونات الكالسيوم : ____**_CaCl_{2(aq)} + H₂CO_{3(aq)} -**____ : كربونات الكالسيوم
- ____Al(OH)_{3(aq)} + 3HCl_(aq) → 3H₂O_(I) + AlCl_{3(aq)} _ : هيدروكسيد الألمنيوم

اكتب المصطلح العلمى :

س مادة توجد في الوسادات الهوائية للسيارات تشتعل كهربائيا عند حدوث تصادم مولدة غاز النيترّوجين (أزيد الصوديوم)

س أيونات لا تشارك أو لا تتفاعل خلال التفاعل الكيميائي . ﴿ أَيُونَاتَ مَتَفَرِجَةَ ﴾

أكمل الفراغ :

س تشتعل مادة أزيد الصوديوم NaN₃ كهربائيا في الوسادات الهوائية للسيارات مولدة غاز 🛆 **النيتروجين** ___

اختر الإجابة:

س الأيونات المتفرجة في التفاعل التالي : $AgNO_{3(ad)} + NaCI_{(ad)} \rightarrow AgCI_{(s)} + NaNO_{3(ad)}$ Na+, Ag+ 🔾 CI^{-} , NO_{3}^{-} Ag + , Cl- \bigcirc

Na⁺, NO₂⁻ \bigcirc

تــدرب و تـفـوق اختبارات الكترونية

•

الوحدة الرابعة : التفاعلات الكيميائية والكيمياء الكمية الكتلة المولية الذرية والكتلة المولية الجزيئية والكتلة المولية

مقدمة و مراجعة :

الوحدة البنائية للمادة

أصغر جزء من المادة يحمل خواصها الكيميائية .

الوحدة البنائية	مثال	نوع المادة
خرة	Na , He	عنصر ذري
com/kw	0 ₂ , H ₂	عنصر جزيئي
جزيء	H_2O , CO_2	مركب تساهمي
وحدة صيغة	NaCl, CaCl ₂	مركب أيوني
أيون	Ca ²⁺ , Cl⁻	أيون

أكمل الجدول التالي :

الوحدة البنائية	الصيغة الكيميائية	المادة
خرة	Ν	النيتروجين الذري
جزيء	N ₂	غاز النيتروجين
جزيء	H ₂ O	الماء
أيون	Ca ²⁺	كاتيون الكالسيوم
وحدة صيغة	CaF ₂	فلوريد الكالسيوم
جزيع الكريا	C ₁₂ H ₂₂ O ₁₁	السكروز
ايون أيون	CI⁻	أنيون الكلوريد
جزيء	02	الأكسجين
جزيء	SO ₂	ثاني أكسيد الكبريت
وحدة صيغة	Na ₂ S	كبريتيد الصوديوم
خرة	К	البوتاسيوم

الذرة صغيرة جدا ولا نستطيع أن نزن الذرة تم اعتماد كتلة ذرة الكربون-12 **C** أساسا لقياس الكتل الذرية للعناصر

العنصر	الكتلة الذرية
N	14 a.m.u
Н	1 a.m.u
0	16 a.m.u
Ca	40 a.m.u
F	19 a.m.u
Mg	24.30 a.m.u

المول :

المول

الكمية من المادة التي تحتوي على **6 x 10²³ م**ن الوحدات البنائية

س ما هو عدد أفوجادرو ؟

عدد أفوجادرو يساوي **6 x 10**²³

س ما العلاقة الرياضية بين عدد المولات و عدد الوحدات البنائية ؟

س صف العلاقة بين عدد أفوجادرو والمول الواحد لأي مادة .

يحتوي المول الواحد لأي مادة على عدد أفوجادرو من الوحدات البنائية. س كم عدد مولات المغنيسيوم التي تحتوي على 1.25 x 10²³ ذرة منه ؟ $n = \frac{N_u}{N_A} = \frac{1.25 \times 10^{23}}{6 \times 10^{23}} = 0.208 mol$

 ${f Br_2}$ کم عدد المولات في ${f Br_2}$ + ${f 6}$ جزيئات من ${f Br_2}$?

$$n = \frac{N_u}{N_A} = \frac{6 \times 10^{22}}{6 \times 10^{23}} = 0.1 mol$$

س كم عدد المولات في 1.5×1.5 من جزيئات من NH₃ ؟

$$n = \frac{N_u}{N_A} = \frac{1.5 \times 10^{23}}{6 \times 10^{23}} = 0.25 mol$$

س احسب عدد الذرات في **3.2 mol** من الهيليوم **He**

$$n=\frac{N_u}{N_A}$$

 $N_{\mu} = n \times N_{A} = 3.2 \times 6 \times 10^{23} = 1.92 \times 10^{24}$ ذرة

س كم عدد جزيئات الماء التي توجد في **0.360 mol** منه ؟

$$n=\frac{N_u}{N_A}$$

 $N_u = n \times N_A = 0.360 \times 6 \times 10^{23} = 2.16 \times 10^{23}$ جزئ

س كم عدد الذرات في **2.12 mol** من البروبان **C₃H**₈ ؟

$$\boldsymbol{n}=\frac{N_u}{N_A}$$

 $N_u = n \times N_A = 2.12 \times 6 \times 10^{23} = 1.27 \times 10^{24}$ جزئ

almanahj.com/kw

عدد الذرات = $\frac{1.2\times10^{24}\times10}{1}$ = $\frac{1.2\times10^{24}\times10}{1}$ ذرق

س كم عدد الذرات الموجودة في **1.14 mol** من جزيئات **50**₃ ؟

 $N_u = n \times N_A = 1.14 \times 6 \times 10^{23} = 6.84 \times 10^{23}$ جزئ

الكتلة المولية الذرية :

الكتلة المولية الذرية

هي كتلة المول الواحد من ذرات ذلك العنصر معبراً عنها بالجرامات .

الكتلة المولية الذرية

العدد الكتلي لذلك العنصر مقدرا بالجرامات

س ما هي الكتلة المولية الذرية لعنصر الهيليوم ؟ [He = 4]

الكتلة المولية الذرية 4 g/mol = He

الكتلة المولية الجزيئية :

الصيغة الكيميائية للمركب

هي الصيغة التي تدل على عدد ذرات كل عنصر في الوحدة البنائية لهذا المركب

س ما هي الصيغة الكيميائية لمركب ثالث أكسيد الكبريت ؟

س كم عدد ذرات الهيدروجين في الوحدة البنائية لكل من المواد التالية :

AI(OH)₃

 SO_3

- - _____10____∶C₄H₁₀O ■

س احســب الكتلــة الموليــة لكلوريــد الكالســيوم CaCl_ وهــو مركــب أيــونـى . [Ca = 40, Cl = 35.5]

Mwt = (1x40) + (2x35.5) = 111 g/mol

س احسب الكتلة المولية للجلوكوز C₆H₁₂O₆. [C = 12 g/mol, H = 1 g/mol, O = 16 g/mol]

Mwt = (6x12)+(12x1)+(6x16) = 180 g/mol

الكتلة المولية للمادة وعلاقتها الرياضية بالمول :

الكتلة المولية

كتلة مول واحد من المادة مقدرة بالجرامات .

س ما العلاقة الرياضية التي تربط الكتلة المولية لمادة ما بعدد المولات ؟

س احسب الكتلة في **9.45 mol** من ثالث أكسيد ثنائي النيتروجين N₂O₃ ؟ [0 = 16 g/mol["] N = 14 g/mol]

> Mwt = (2x14) + (3x16) = 76 g/mol**ms = n x Mwt** = 9.45 x 76 = 718.2 g

> > 31

	ms
17	M.wt.

متغير	الاسم
n	عدد المولات (mol)
ms	كتلة المادة (g)
M.wt.	الكتلة المولية (g/mol)

(K = 39 g/mol] . **K من البوتاسيوم 3.32 mol** من البوتاسيوم **ms = n x Mwt** = 3.32 x 39 = 129.48 g

س أوجد كتلة A.52×10⁻³ mol من C₂₀H₄₂. [C = 12 g/mol , H = 1 g/mol].

Mwt = (20x12) + (42x1) = 282 g/mol

 $ms = n x Mwt = 4.52 x 10^{-3} x 282 = 1.27 g$

س احسب عدد المولات في B⁻¹g من B. [B=10.811 g/mol] . B من B

 $n = \frac{ms}{Mwt} = \frac{3.7 \times 10^{-1}}{10.811} = 0.034 \ mol$

س احسب عدد المولات في **27.4 g** من TiO₂ . [IiO₂ = 80 g/mol] .

موامع $n = \frac{ms}{Mwt} = \frac{27.4}{80} = 0.34 \text{ mol}$ almanahj.com/kw

س أوجد عدد المولات في **92.2 g** أكسيد الحديد **Fe₂O₃ [Fe = 56, O = 16**] . وعدد وحدات الصيغة فيها .

Mwt = (2x56)+(3x16)=160 g/mol

$$n = \frac{ms}{Mwt} = \frac{92.2}{160} = 0.576 \ mol$$

$$n=\frac{N_u}{N_A}$$

Nu = n x N_A = 0.576 x 6 x 10²³ = 3.45 x 10²³ وحدة صيغة

س احسب عدد الجزيئات الموجودة في 60 من NO₂ . [N = 14, O = 16] . NO₂ ا Mwt = (1x14)+(2x16)=46 g/mol

$$n = \frac{ms}{Mwt} = \frac{60}{46} = 1.3 mol$$
$$n = \frac{N_u}{N_A}$$

 $Nu = n \times N_A = 1.3 \times 6 \times 10^{23} = 7.8 \times 10^{23}$

مسائل على الكتلة المولية الذرية و الكتلة المولية الجزيئية و الكتلة المولية

س كم عدد مولات السيليكون التي تحتوي على **2.08 x 10**²⁴ ذرة منه ؟

$$\boldsymbol{n} = \frac{N_u}{N_A} = \frac{2.08 \times 10^{24}}{6 \times 10^{23}} = 3.46 \text{ mol}$$

س كم عدد المولات في **4.81 × 4.81** ذرة من Li ؟

$$\boldsymbol{n} = \frac{N_u}{N_A} = \frac{4.81 \times 10^{24}}{6 \times 10^{23}} = 8.01 \text{ mol}$$

س كم عدد المولات في **°1**0 جزيئات من 0₂؟

almanahj.com
$$n = \frac{N_u}{N_A} = \frac{10^9}{6 \times 10^{23}} = 1.66 \times 10^{-15} mol$$

 ${
m m}$ كم عدد المولات الموجودة في ${
m NO_2}$ ${
m NO_2}$ من جزيئات ${
m NO_2}$?

$$n = \frac{N_u}{N_A} = \frac{7.75 \times 10^{24}}{6 \times 10^{23}} = 12.91 \text{ mol}$$

س احسب الكتل المولية الجزيئية لكل من : [C = 12 g/mol , H = 1 g/mol , O = 16 g/mol , Cl = 35.5 g/mol , N = 14 g/mol , P = 31 g/mol]

- الماء H₂O : H₂O Mwt = (2 x 1) + (1 x 16) = 18 g/mol
 - C₆H₅Cl کلوروبنزین

$$Mwt = (6 x 12) + (5 x 1) + (1 x 35.5) = 112.5 g/mol$$

فوق أكسيد الهيدروجين H₂O₂:

$$Mwt = (2x1) + (2x16) = 34 g/mol$$

: C₂H₆

Mwt = (2x12) + (6x1) = 30 g/mol

: PCl₃ •

Mwt = (1x31) + (3x35.5) = 137.5 g/mol

: C₃H₇OH •

Mwt = (3 x 12) + (8 x 1) + (1 x 16) = 60 g/mol

: N₂O₅ •

س ما هي كتلة المول الواحد من كل من المواد التالية : [C = 12 g/mol, Si = 28 g/mol, O = 16 g/mol, Cl = 35.5 g/mol, N = 14] [g/mol, Br = 80 g/mol]

: Cl₂ •

Mwt = (2 x 35.5) = 71 g/mol

:NO₂ •

 $Mwt = (1 \times 14) + (2 \times 16) = 46 \text{ g/mol}$

: CBr₄ •

$$Mwt = (1 x 12) + (4 x 80) = 332 g/mol$$

: SiO₂ • Mwt = (1 x 28) + (2 x 16) = 60 g/mol

س أوجد الكتلة المولية لوحدة الصيغة لكل من المركبات التالية : [Li = 7, S = 32, Fe = 56, Cl = 35.5, Ca = 40, O = 16, H = 1]

: Li₂S •

$$Mwt = (2x7) + (1x32) = 46 g/mol$$

:FeCl₃ ■

 $Mwt = (1 \times 56) + (3 \times 35.5) = 162.5 g/mol$

: Ca(OH)₂ •

 $Mwt = (1 \times 40) + (2 \times 16) + (2 \times 1) = 74 \text{ g/mol}$

س أوجد كتلة 0.0112 mol من K₂CO₃. [C = 12 g/mol , K = 39 g/mol , O = 16 g/mol]

 $Mwt = (2 \times 39) + (1 \times 12) + (3 \times 16) = 138 \text{ g/mol}$

 $n=\frac{ms}{Mwt}$

ms = n x **Mwt** = 0.0112 x 138 = 1.545 g

س ما هي كتلة **2.5 mol** من كبريتات الصوديوم ،Na₂SO . [Na = 23 g/mol , S = 32 g/mol , O = 16 g/mol]

almanahj.com/kw

ms = n x **Mwt** = 2.5 x 142 = 355 g

 $n = \frac{ms}{Mwt}$

س ما هي كتلة **2.5 mol** هيدروكسيد الحديد Fe(OH)₂ II . [Fe = 56 g/mol , H = 1 g/mol , O = 16 g/mol]

 $Mwt = (1 \times 56) + (2 \times 16) + (2 \times 1) = 90 \text{ g/mol}$

 $n = \frac{ms}{Mwt}$

ms = n x Mwt = 2.5 x 90 = 225 g [Be = 9] . Be من 0.72 mol هي كتلة n = $\frac{ms}{Mwt}$

ms = n x Mwt = 0.72 x 9 = 6.48 g

س ما هى كتلة **2.4 mol** من N₂. [N = 14]

Mwt = (2 x 14) = 28 g/mol

$$n=\frac{ms}{Mwt}$$

ms = n x Mwt = 2.4 x 28 = 67.2 g

س ما هي كتلة 0.16 mol من H₂O₂. [H = 1 , O = 16]

 $Mwt = (2 \times 1) + (2 \times 16) = 34 \text{ g/mol}$

ms = n x Mwt = 0.16 x 34 = 5.44 g

س ما هي كتلة 5.08 mol من Ca(NO₃)₂. [Ca = 40 , N = 14 , O = 16]. Mwt = (1 × 40) + (2 × 14) + (6 × 16) = 164 g/mol

 $=\frac{ms}{Mwt}$

ms = n x Mwt = 5.08 x 164 = 833.12 g

س احسب عدد المولات في g 847 من ₂(NH₄) . [CO₃(NH₄) = 96 g/mol] .

 $n = \frac{ms}{Mwt} = \frac{847}{96} = 8.82 \ mol$

 $[N_2O_3 = 76 \text{ g/mol}] \cdot N_2O_3$ من 75 g من $n = \frac{ms}{Mwt} = \frac{75}{76} = 0.98 \text{ mol}$

 $[\mathsf{N}=\mathsf{14}]$. N_2 من $\mathsf{75}$ g من $\mathsf{75}$ R_2

Mwt = (2x14) = 28 g/mol

$$\mathbf{n} = \frac{\mathbf{ms}}{\mathbf{Mwt}} = \frac{75}{28} = 2.67 \text{ mol}$$

س أوجد عدد الوحدات البنائية في كل من المواد التالية :

س 3 mol عن Sn

$$n = \frac{N_u}{N_A}$$

N_u = **n** x N_A = 3 x 6 x 10²³ = 1.8 x 10²⁴ ci

س 0.4 mol عن KCl

أسئلة على الكتلة المولية الذرية والكتلة 🎆 المولية الجزئية والكتلة المولية

اكتب بين القوسين الاسم أو المصطلح العلمي الدال على كل مما يلي :

- **س** كمية المادة التي تحتوى على عدد افوجادرو (**3×10×6**) من الوحدات البنائية للمادة. (المول)
 - **س** كتلة المول الواحد من ذرات العنصر معبرا عنها بالجرامات . (الكتلة المولية الذرية)
 - س كتلة المول الواحد من جزيئات المركب معبرا عنه بالجرام . (الكتلة المولية الجزيئية)
 - س كتلة جزيء واحد مقدرة بوحدة الكتل الذرية (كتلة المركب التساهمي الجزيئي)

- س كتلة المول الواحد من وحدة الصيغة المركب الأيوني معبرا عنه بالجرام . (الكتلة المولية الصيغية)
- س كتلة وحدة صيغية واحدة من المركب الأيوني مقدرة حسب وحدة الكتل الذرية . (الكتلة الصيغية)
 - **س** كتلة المول الواحد من أي مادة مقدرا بالجرامات . (**الكتلة المولية للمادة**)

أكمل الفراغ :

- س عدد ذرات الكربون في حمض الأسيتيل ساليسيليك (الأسبرين) **4₈0 C₄ ي**ساوي م
 - **س** نصف مول من ذرات البوتاسيوم يحتوى على _3x10²³ _ _ ذرة
 - **س** عدد الذرات الموجودة في (2) مول من الكربون ____<u>1.2x10</u>__ ذرة
- **س** كتلة الحديد (Fe = 56 g/mol) في (Fe = 56 g/mol) ذرة منه تساوى g
- س عدد مولات ذرات الأكسجين الموجودة في مول واحد من فوسفات الكالسيوم Ca₃(PO₄)₂ يساوي ____8____ mol يساوي ____8____
 - **س** الوحدة البنائية لمركب NaOH هي _ _ <u>وحدة صيغة _</u>

اختر الإجابة :

س إذا علمت أن (C=12,H=1) فان الكتلة المولية الجزيئية لغاز الايثان C₂H₆ تساوى:

- (13 g/mol) 🔿
- (30 g/mol) O
- (40 g/mol) 🔿
- (60 g/mol) O

س كتلة المول الواحد من أي عنصر أو مركب جزيئي أو مركب أيونى مقدرة بالجرام تسمى :

- الكتلة المولية الذرية 🔾
- الكتلة المولية الجزيئية
- الكتلة المولية الصيغية
- O الكتلة المولية للمادة

علل

س يتساوى عدد المولات فـي **g 6 م**ـن عنصـر الكربـون (C=12) مـع **g 1**2مـن عنصـر المغنسيوم (Mg = 24)

الكربون $n = \frac{ms}{Mwt} = \frac{12}{24} = 0.5 \ mol$ $n = \frac{ms}{Mwt} = \frac{6}{12} = 0.5 \ mol$

س عدد الذرات في **g 20 م**ن النيون ضعف عدد الذرات في **g 23 م**ن الصوديوم (Na=23 , Ne=10)

40

الوحدة الرابعة : التفاعلات الكيميائية والكيمياء الكمية **النسب المئوية لتركيب المكونات**

حساب النسبة المئوية لمكونات المركب

إذا كان المعطى في السؤال جرامات المركب , نستخدم هذا القانون .

النسبة المئوية لكتلة العنصر =

100 × كتلة العنصر الكتلة الكلية للمركب

س يتحد **8.2 g** من المغنيسيوم اتحاداً تاماً مع **5.4 g** من الأكسجين لتكوين مركب ما. ما هي النسب المئوية لمكونات هذا المركب ؟

% كتلة الاكسجين
$$= \frac{5.4}{(5.4+8.2)} \times 100 = \frac{5.4}{(5.4+8.2)} \times 100 = 39.7\%$$

 $Mg = \frac{Mg}{Mg} \times \frac{Mg}{216} \times 100 = \frac{8.2}{(5.4+8.2)} \times 100 = 60.29\%$

س يتحد **g 9.03** من المغنيسيوم اتحاداً تاماً مع **g 3.48 م**ن النيتروجين ليتكون مركب ما , ما هي النسب المئوية لمكونات هذا المركب ؟

$$\%Mg = \frac{Mg}{2} \times 100 = \frac{9.03}{(3.48 + 9.03)} \times 100 = 72.18\%$$

% $N = 100 - \%Mg = 100 - 72.18 = 27.82\%$

س عنـدما تتحلـل عينـة مـن أكسـيد الزئبـق (II) قـدرها g 14.2 لعناصـرها الأوليـة بالتسخين ينتج g 13.2 من الزئبق. ما هي النسب المئوية لمكونات هذا المركب ؟

$$\% Hg = \frac{Hg}{2}$$
 كتلة $100 = \frac{13.2}{(14.2)} \times 100 = 92.95\%$
 $\%$ كتلة المركب $100 = 92.95 = 7.05\%$

س يمثل الكبريت **%26.7** من كتلة المركب **ٍ.NaHSO .** أوجد كتلة الكبريت فـي **16.8 g** من **_.NaHSO** .

$$\% S = \frac{S}{27}$$
كتلة المركب × 100
 $S = \frac{\% S}{27} \times \frac{S}{215} = \frac{26.7 \times 16.8}{100} = 4.4856 g$

س احسب كتلة الكربـون المـوجــودة فــي **g 82 م**ــن غــاز البروبـان C₃H₈ , مـع العلــم أن النسبة المـئوية للكربون فـي C₃H₈ تساوي 8**1.8** .

$$C$$
 كتلة المركب $\times \frac{\% C}{100} = \frac{81.8 \times 82}{100} = 67.076 g$

[C = 12, H = 1]. $[C_3H_8]$ احسب النسبة المئوية لمكونات البروبان $[C_3H_8]$. [C = 12, H = 1]

$$Mwt = (3x12) + (8x1) = 44 \text{ g/mol}$$

$$\%C = \frac{3 \times 12}{Mwt} \times 100 = \frac{3 \times 12}{44} \times 100 = 81.81\%$$

$$\%H = 100 - \%C = 100 - 81.81 = 18.19\%$$

س احسب النسبة المئوية الكتلية للعناصر في NH₄Cl . [Cl = 35.5 , H = 1 , N = 14] . $Mwt = (1 \times 14) + (4 \times 1) + (1 \times 35.5) = 53.5 g/mol$ $N = \frac{N}{Mwt}$ في المول الواحد $N = \frac{1 \times 14}{53.5} \times 100 = 26.16\%$ $\% H = \frac{2}{100} = \frac{100}{100} \times \frac{100}{100} \times \frac{100}{100} \times \frac{100}{535} \times \frac{100}{100} = 7.47\%$ %*Cl* = 100 - (%*C* + %*H*) = 100 - (26.16 + 7.47) = 66.37\% **س** احسب كتلة الهيدروجين في **g 350 م**ن C = 12 , H = 1] C₂H₆ من $Mwt = (2 \times 12) + (6 \times 1) = 30 g/mol$ $H = \frac{6 \times 1}{100} \times \frac{100}{100} = \frac{6 \times 1}{30} \times 100 = 20\%$ H كتلة المركب $H \times \frac{00}{100} = \frac{20 \times 350}{100} = 70 g$ س احسب كتلة الهيدروجين في 20.2 من "NaHSO. [S = 32 , H = 1, Na = 23, O = 16] $Mwt = (1 \times 23) + (1 \times 1) + (1 \times 32) + (4 \times 16) = 120 g/mol$ $\% H = \frac{1}{120} \times \frac{100}{100} = \frac{1}{120} \times \frac{100}{100} = 0.83\%$ H ڪتلة المركب $\times \frac{\% H}{100} = \frac{0.83 \times 20.2}{100} = 0.168 g$

صح أم خطأ :

س ممكن حساب النسبة المئوية لكتلة أي عنصر في مركب ما بقسمة كتلة العنصر في المركب على الكتلة المولية للمركب أو كتلته الكلية والضرب في 100 <mark>صح</mark> **س** يحتوي **g 100** من مركـب مـا علـى **1.88 mol** مـن **0** و **1.25 mol** مـن Fe . احسـب النسبة الجزيئية للأكسجين إلى الحديد

> Fe : 0 1.25 1.25 1 : 1.5 2 : 3

أكمل الفراغ :

س إذا اتحد (**g B**) من الكربون مع (**g B**) مع الأكسجين لتكوين مركب CO فان النسبة المئوية لكتلة الكربون في هذا المركب ____<u>27.27</u>____ %

اختر الإجابة الصحيحة :

س إذا كانت النسبة المئوية الكتلية للهيدروجين في الميثان CH4 تساوى **%25** فان النسبة المئوية للكربون فيه :

15% 0 85% 0 50% 0

حساب النسبة المئوية لمكونات المركب

س يتحد **g 29 م**ن الفضة اتحادا تاماً بـ **g 4.3 م**ن الكبريت ليتكون مركب ما . ما هي النسب المئوية لمكونات هذا المركب ؟

$$\% Ag = \frac{Ag}{29} \times 100 = \frac{29}{(4.3 + 29)} \times 100 = 87\%$$

 $\% S = 100 - \% Ag = 100 - 87 = 13\%$

[C = 12, H = 1]. C_2H_6 العناصر في C = 12, H = 1]. [C = 12, H = 1]

$$Mwt = (2 \times 12) + (6 \times 1) = 30 \text{ g/mol}$$

$$%C = \frac{2 \times 12}{30} \times 100 = \frac{2 \times 12}{30} \times 100 = 80\%$$

$$\% H = 100 - \% C = 100 - 80 = 20 \%$$

75% 〇

س احسب كتلة الهيدروجين في 2.14 g من NH₄Cl . [N = 14 , H = 1, Cl = 35.5] .

$$Mwt = (1 \times 14) + (4 \times 1) + (1 \times 35.5) = 53.5 \text{ g/mol}$$
$$\%H = \frac{H}{100} \approx 100 = \frac{4 \times 1}{53.5} \times 100 = 7.47 \%$$
$$H \approx \frac{\%H}{100} \approx \frac{\%H}{100} \approx \frac{7.47 \times 2.14}{100} = 0.1598 \text{ g}$$

س احســب النســبة المئويــة لمكونــات المركــب Ca(C₂H₃O₂)₂, ثــم احســب كتلــة الهيدروجين في **124 g** من المركب . [Ca = 40 , H = 1, C = 12, O = 16]

$$Mwt = (1 \times 40) + (4 \times 12) + (6 \times 1) + (4 \times 16) = 158 \text{ g/mol}$$
$$\%Ca = \frac{4 \times 100}{158} \times 100 = \frac{1 \times 40}{158} \times 100 = 25.31 \%$$
$$\%Ca = \frac{4 \times 10}{158} \times 100 = 25.31 \%$$
$$\%Ca = \frac{4 \times 12}{158} \times 100 = 30.37 \%$$
$$\%Ca = \frac{4 \times 12}{158} \times 100 = 30.37 \%$$
$$\%H = \frac{30.37}{158} \times 100 = \frac{4 \times 10}{158} \times 100 = 3.79 \%$$
$$\%H = \frac{4 \times 10}{100} \times 100 = \frac{4 \times 16}{158} \times 100 = 3.79 \%$$
$$\%O = \frac{4 \times 16}{158} \times 100 = 40.5 \%$$
$$H = \frac{6 \times 1}{100} \times 100 = \frac{4 \times 16}{158} \times 100 = 40.5 \%$$
$$H = \frac{6 \times 1}{100} \times 100 = \frac{3.79 \times 124}{100} = 4.6996 g$$

UULA

س احسب النسبة المئوية لمكونات المركب HCN , ثم احسب كتلة الهيدروجين فـي 378 g من المركب .[H = 1, N = 14, C = 12]

$$Mwt = 1 + 12 + 14 = 27 \text{ g/mol}$$

$$\%H = \frac{1}{27} \times 100 = \frac{1}{27} \times 100 = 3.7 \%$$

$$\%C = \frac{1}{27} \times 100 = \frac{1}{27} \times 100 = \frac{1}{27} \times 100 = 44.44 \%$$

$$\%C = \frac{1}{27} \times 100 = \frac{1}{27} \times 100 = 44.44 \%$$

$$\%N = \frac{1}{27} \times 100 = \frac{1}{27} \times 100 = 51.85 \%$$

$$H = \frac{1}{27} \times 100 = \frac{1}{27} \times 100 = 51.85 \%$$

$$H = \frac{1}{100} \times \frac{1}{100} = \frac{3.7 \times 378}{100} = 13.986 \text{ g}$$

س احسب النسبة المئوية لمكونات المركب عندما يتحـد N و 222.6 مـن N اتحـاداً تامـاً مع 77.4 g من 0 .

$$\% N = \frac{N}{222.6} \times 100 = \frac{222.6}{(222.6 + 77.4)} \times 100 = 74.2\%$$

 $\% O = 100 - \% N = 100 - 74.2 = 25.8\%$

س احسب النسبة المئوية لمكونات ملح الطعام إذا كان تحلل ملح الطعام ينـتج منـه و **8.04 g** و **4.04 g** من Cl .

$$\%Na = \frac{Na}{2.62} \times 100 = \frac{2.62}{(4.04 + 2.62)} \times 100 = 39.3\%$$

% $Cl = 100 - \%Na = 100 - 39.3 = 60.7\%$

س احسب النسب المئوية لمكونات مركب $H_2 S$. واحسب كتلة الكبريت في 3.54 g منه [H = 1 , S = 32]

$$Mwt = (2 \times 1) + (1 \times 32) = 34 \text{ g/mol}$$
$$\%S = \frac{1 \times 32}{34} \times 100 = \frac{1 \times 32}{34} \times 100 = 94.11 \%$$
$$\%H = 100 - \%S = 100 - 94.11 = 5.89\%$$
$$S = \frac{\%S \times 3.54}{100} = \frac{94.11 \times 3.54}{100} = 3.331 \text{ g}$$

س احسب النسب المئوية لمكونـات مركـب (NH₄)₂C₂O₄) . واحسـب كتلـة النيتـروجين في 25 g منه [H = 1 ,N = 14, C = 12, O = 16]

$$Mwt = (2 \times 14) + (8 \times 1) + (2 \times 12) + (4 \times 16) = 124 \text{ g/mol}$$

$$Mwt = (2 \times 14) + (8 \times 1) + (2 \times 12) + (4 \times 16) = 124 \text{ g/mol}$$

$$N = \frac{2 \times 14}{124} \times 100 = 22.58 \%$$

$$\% H = \frac{3}{100} \text{ (Helse Hadder)} \times 100 = \frac{8 \times 1}{124} \times 100 = 6.45 \%$$

$$\% H = \frac{3}{124} \times 100 = 5.45 \%$$

$$\% C = \frac{3}{100} \text{ (Helse Hadder)} \times 100 = \frac{2 \times 12}{124} \times 100 = 19.35 \%$$

$$\% C = \frac{3}{100} \text{ (Helse Hadder)} \times 100 = \frac{4 \times 16}{124} \times 100 = 51.61 \%$$

$$N = \frac{3}{100} \text{ (Helse Hadder)} = \frac{22.58 \times 25}{100} = 5.645 g$$

س احسب النسب المئوية لمكونات مركب $Mg(OH)_2$. واحسب كتلة المغنيسيوم في $H=1\,, O=16\,, Mg=24.3$ منه [H=1,O=16, Mg=24.3]

$$Mwt = (1 \times 24.3) + (2 \times 16) + (2 \times 1) = 58.3 \text{ g/mol}$$

$$\% Mg = \frac{100}{100} = \frac{100}{100} \times 100 = \frac{24.3}{58.3} \times 100 = 41.68 \%$$

$$\% 0 = \frac{100}{100} \times 100 = \frac{2 \times 16}{58.3} \times 100 = 54.88 \%$$

$$\% H = \frac{100}{100} \times 100 = \frac{2 \times 1}{58.3} \times 100 = 54.88 \%$$

$$\% H = \frac{100}{100} \times 100 = \frac{2 \times 1}{58.3} \times 100 = 3.43 \%$$

$$Mg = \frac{100}{100} = \frac{100}{100} = \frac{21.68 \times 97.4}{100} = 40.596 g$$

س احسب النسب المئوية لمكونات مركب ،Na₃PO₄ . واحسب كتلـة الفوسـفور فـي almanahj.com/kw [Na=23, P=31, O=16] منه 804 g

$$Mwt = (3 \times 23) + (1 \times 31) + (4 \times 16) = 164 \text{ g/mol}$$

$$\%Na = \frac{100}{100} \times \frac{100}{164} \times 100 = 42.07 \%$$

$$\%Na = \frac{100}{164} \times 100 = 42.07 \%$$

$$\%P = \frac{100}{164} \times \frac{100}{164} = \frac{1 \times 31}{164} \times 100 = 18.9 \%$$

$$\%D = \frac{1 \times 31}{164} \times 100 = 18.9 \%$$

$$\%D = \frac{4 \times 16}{164} \times 100 = 39.02 \%$$

$$P^{3} = \frac{\%P}{100} \times \frac{100}{100} = \frac{18.9 \times 804}{100} = 151.95 g$$

س أي مـــن المركبــات التاليـــة يحتـــوي علـــى أكبــر نســـبة مئويـــة مـــن الحديــد : [H = 1, Cl= 35.5, C =12, O =16, Fe = 56] FeO - Fe(OH)₂ - Fe(C₂H₃O₂)₃ - FeCl₂

$$Fe0: \% Fe = {270 ext{ Fe} ext{ bold by Ee}} ext{ Seo} ext{ Seo} ext{ Xeo} ext{ Xeo} ext{ So} ext{ So} ext{ Xoo} ext{ So} ext{ Xoo} ext{ So} ext{ So} ext{ Xoo} ext{ Xoo}$$

 $\frac{1\times 30}{(56+16)} \times 100 = 77.77 \%$

 $Fe(OH)_2$: %Fe =

$$\frac{1 \times 56}{[(1 \times 56) + (2 \times 16) + (2 \times 1)]} \times 100 = 62.22\%$$

$$Fe(C_2H_3O_2)_3:\%Fe =$$

$$\frac{1}{[(1 \times 56) + (6 \times 12) + (9 \times 1) + (6 \times 16)]} \times 100 = 24\%$$

 $FeCl_2:\%Fe =$

$$\frac{1 \times 56}{[(1 \times 56) + (2 \times 35.5)]} \times 100 = 44\%$$