تم تحميل هذا الملف من موقع المناهج الكويتية
الملف نموذج إجابة الاختبار الرسمي المعتمد هن التوجيه الفني
موقح المناهج ص¢ المناهج الكويتية ص الهف الحاشر ص كيمياء ص الفصل الثاني)

المزيد من الملفات بحسب الصف الكاشر والمادة كيمياء في الفصل الثاني	
تعاريف وتعاليل	1
بنك اسئلة	2
مذكرة كيمياء	3
مذكرة كيمياء فصل ثانيـ.	4
مذكرة الورقة التقويمية	5

نــــــــو ذج

الــتـوجـيـه الــنـنـي الـعــام لـلـعـلـوم
امـتـحـان الـفـتـرة الــثـانـيـة الــعـام الــدر اسي 2022-2023 م

تأكد أن عدد صفحات الامتحان (6) صفحات مختلفة (عداصفحة الغلاف هذه)

يـــع الامـتـحـان فـي قـسمـيـن:
أولا : الأسئـلـة الـمـوضوعيـة (14درجـة) إجـــاريــة ويـشمل الـسؤ ال الأول و الألــــانـي
و الـمطلـوب الاجـابـة عـنـهمـا بـكـامـل جـزئــيـاتـهمـا
ثـانـيـا : الأسـئـلـة الـمقـالـيـة (24 درجـة)
Telegran
 و الـمطلـوب الاجـابــة عن ثـلاثــة أسـئـلـة فـقط بـكـامـل جـزئـيـاتـهـا

الــدرجـة الـكـلـيـة لــلامـتـحان 38 درجـة

القسم الأول: الأسئلة الموضوعية (14 درجة)

جميع الأسئلة (الموضوعية) اجبارية

السؤال الأول:

1- يتغاعل محلول كلوريد الصوديوم مع محلول نيترات الفضة مكوناً محلول نيترات الصوديوم وكلوريد

Telegram:
ykuwait_net_home ص 16

2-2 يتعرض الحديد للصدأ حسب المعادلة الكيميائية التالية: وتكون الحالة الفيزيائية للمركب الناتج:

ص

\square
 ص59
صيغته الجزيئية تكون:

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \square \\
\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{O}_{4} \square
\end{gathered}
$$

$$
\mathrm{CH}_{3} \mathrm{O} \square
$$

$$
\mathrm{C}_{3} \mathbf{H}_{9} \mathrm{O}_{3} \nabla
$$

$$
\text { 4- طبعاً للمعادلة الكيميائية الموزونة التالية: } 4 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

ص64

فإن عدد مولات الالمنيوم اللازمة لتكوين (3 l () من أكسيد الألمنيوم يساوي:	
$4 \mathrm{~mol} \square$	$2 \mathrm{~mol} \square$
$8 \mathrm{~mol} \square$	6 mol V

(صحيحة) ص58

المسؤال الثاني:

(أ الكتب بين القوسين الاسم أو المصطلح العلـمي الذي تدل عليـه كل هن العبارات التقالية: (3x1 (3)
1- تغير في صفات المواد المتفاعلة وظهور صفات جديدة في المواد الناتجة. (التفاعل الكيميائي) ص15 2- كمية المادة التي تحتوي على عدد أفوجادرو(6×10^{23}) من الوحدات البنائية. (mokl المول 46 3- كتلة مول واحد من المادة مقدرة بالجرامات.
M.wt. أو

4P ${ }_{(\mathrm{s})}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10(\mathrm{~s})} \quad$ حتى تصبح المعادلة الكيميائية موزونة في التفاعل التالي: ص22

فإن قيمة معامل الأكسجين تساوي5.
2- عدد جزيئات الأمونيا الموجودة في نصف مول منها تساوي........ 3×10^{23} جزيء. 3- كتلة فلوريد الليثيوم (LiF = 26) التي تحتوي علي (0.25 mol) تساوي جرام . ص48 4- إذا كانت النسبة المئوية لكتلة الكربون في الإيثان C2 ${ }^{\text {C }}$ تساوي 80% ، فإن النسبة المئوية لكتلة ص55 الهيدروجين فيه تساوي 20

القسم الثاني: الأسئلة الققالية (24 درجة)

(أجب عن (3) أسئلة فقط هن الأسئلة التالية)

السؤال الثالث:

 \longrightarrow - $(2 \times 1=2)$(أ) علل لما يلي تعليلاُ علمياً سليهما: (2
1 - تكتب الصيغة الكيميائية للعامل الحفاز فوق السهم في المعادلة الكيميائية. 1 لان العامل الحفاز لا يعتبر من المواد. المتفاعلة أو. الناتجة من التفاعل الكيميائي. ص57

2- الصيغة الجزئية ثلاني أكسيد الكربون ${ }^{\text {الكـ2 }}$ مطابقة لصيغته الأولية.
 لأن الصيغة. الجزيئية لثاني أكسبي. الكربون تحتوي. على عناصره في أبسط نسبة. للأعداد. الصحيحة

Cr: 27%

الشكل المقابل يوضح النسبة المئوية لمكونات المركب Kx2 ${ }^{\text {K }}$ ، والمطلوب:

$$
\text { 3- احسب كتلة البوتاسيويم في (} 15 \text { g) من المركب . }
$$

كتلة البوتاسيوم=النسبة المئوبة للبوتاسيوع x الككلة الكلية المركب $6 \mathrm{~g}=\frac{15 \times 40}{100}=$

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{HNO}_{3(\mathrm{aq})}
$$

1- المعادلة الأيونية الكاملة:
${ }_{11 / 2} \mathbf{P b}^{2+}{ }_{(\mathrm{aq})}+\mathbf{2 N O}_{3}^{-}{ }_{(\mathrm{aq})}+\mathbf{2 \mathrm { H } ^ { + }}{ }_{(\mathrm{aq})}+\mathbf{S O}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \rightarrow \mathbf{P b S O}_{4(\mathrm{~s})}+\mathbf{2 \mathbf { H } ^ { + }}{ }_{(\mathrm{aq})}+\mathbf{2} \mathrm{NO}_{3}^{-}{ }_{(\mathrm{aq})}$
\square 2- الأيونات المتفرجة هي . . ${ }^{+}$ 3- المعادلة الأيونية النهائية الموزونة:
$11 / 2$

$$
\mathbf{P b}^{2+}(\mathrm{aq})+\mathrm{SO}_{4-(\mathrm{aq})}^{2^{-}} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}
$$

(ب) حل المسألة التاليـة: (4 x1=4

يتحد النيتروجين والأكسجين لتكوين مركب ثالث أكسيد ثثائي النيتروجين N2O3 . . والمطلوب:
1- احسب الكتلة المولية (M.wt) للمركب، إذا علمت أن (N = $14, ~ \mathrm{C}=16$) .

$$
2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{s})}
$$

1- احسب عدد مولات كلوريد الصوديوم الناتجة من تفاعل (4.6 ga = 23) من الصوديوم (1 (1) مع الكلور .
$1 . \ldots n \mathrm{Na}=\frac{m s}{M . w t .}=\frac{4.6}{23}=0.2 \mathrm{~mol}$

2- احسب كتلة الكلور (Cl=35.5) اللازمة لإتمام التفاعل مع (0.8 mol) من الصوديوم.

$$
\frac{n C l_{2}}{1}=\frac{0.8}{2}=0.4 \mathrm{~mol}
$$

$$
M . w t .=35.5 x 2=71 \mathrm{~g} / \mathrm{mol}
$$

$$
m s=n x M . w t
$$

$$
=0.4 x 71=28.4 g
$$

$$
\begin{aligned}
& \frac{n \mathrm{NaCl}}{2}=\frac{n 0.2}{2} \\
& \mathrm{nNaCl}=0.2 \mathrm{~mol} \\
& 2 \mathrm{~mol} \ldots \rightarrow \text {. } 2 \mathrm{~mol} \\
& 0.2 \mathrm{~mol} \rightarrow \mathrm{n} \\
& \mathrm{n}=0.2 \mathrm{~mol}
\end{aligned}
$$

عينة من أكسيد الزئبق II كتلتها (14.2 g) ، تحللت لعناصرها الأولية بالتسخين ونتج (13.2)) من الزئبق. ص33 $\quad 2 \mathrm{HgO} \xrightarrow{\Delta} 2 \mathrm{Hg}+\mathrm{O}_{2}$

والمطلوب:
احسب النسبة المئوية لمكونات هذا المركب.
تم التحميل من شبكة باكويت التُعليمية
2

$$
\begin{equation*}
\% \mathrm{Hg}=\frac{\mathrm{ms} \mathrm{Hg}}{\mathrm{~ms} \mathrm{Hgo}} \times 100 \tag{I}
\end{equation*}
$$

Telegram:
2.

$$
\% \mathrm{O}=100-\% \mathbf{H g}
$$

$$
=100-92.96
$$

$$
=7.04 \%
$$

$$
\begin{aligned}
\mathrm{ms} \mathrm{O} & =14.2-13.2=1 \mathrm{~g} \\
\% \mathrm{O} & =(1 / 14.2) \times 100 \\
& =7.04 \%
\end{aligned}
$$

(ب) اكتب المعادلات الكيهيائية الرهرية الموزونة لكل هما يلي: (4 = 4 (1x4)
1-تفاعل غاز الهيدروجين مع غاز الأكسجين لتكوين الماء. ص20

1. $\underset{\frac{1}{\varepsilon}}{\mathbf{2 H}_{2(\mathrm{~g})}}+\underset{\frac{\mathrm{O}_{2(\mathrm{~g})}^{2}}{2}}{\frac{1}{c}} \rightarrow \underset{(\mathrm{C}}{ }$
2- تغاعل فلز الصوديوم مع الماء مكونا محلول هيدروكسيد الصوديوم وتصاعد غاز الهيدروجين. ص21
2.

$\underset{\frac{1}{\varepsilon}}{2 \mathrm{Na}_{(\mathrm{s})}}+\underset{\frac{1}{\varepsilon}}{2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{f})}} \rightarrow \underset{\frac{1}{\varepsilon}}{2 \mathrm{NaOH}_{(\mathrm{aq})}}+\underset{\frac{1}{\varepsilon}}{\mathrm{H}_{2(\mathrm{~g})}}$
3- تغاعل الكربون الصلب مع الأكسجين لتكوين غاز أول أكسيد الكربون. ص21
1

$$
\underset{\frac{1}{\varepsilon}}{2 \mathrm{C}_{(s)}}+\frac{\mathrm{O}_{2(\mathrm{~g}}^{\varepsilon}}{\varepsilon} \ldots \underset{\frac{1}{C}}{2 \mathrm{CO}_{(\mathrm{g})}}
$$

4-تغاعل غاز الهيدروجين مع الكبريت الصلب لتكوين غاز كبريتيد الهيدروجين. ص21

1. *

 و

