

الملف نموذج إجابة الاختبار الرسمي المعتمد من التوجيه الفني

موقع المناهج ← المناهج الكويتية ← الصف الثاني عشر العلمي ← رياضيات ← الفصل الثاني

روابط مواقع التواصل الاجتماعي بحسب الصف الثاني عشر العلمي

روابط مواد الصف الثاني عشر العلمي على تلغرام

الرياضيات

اللغة الانجليزية

اللغة العربية

التربية الاسلامية

المزيد من الملفات بحسب الصف الثاني عشر العلمي والمادة رياضيات في الفصل الثاني		
كراسة متابعة تعليمية علمي	1	
حاول ان تحل	2	
نموذج اجابة امتجان 2016 2016	3	
نموذج اجابة اسئلة العام الدراسي 2016 2016	4	
الوحدة 8 احصاء 12علمي	5	

المجال الدراسي: الرياضيات الزمن: ساعتان و45 دقيقة

عدد الصفحات: 11

دولة الكويت وزارة التربية

التوجيه الفني للرياضيات

نموذَّج إجابة امتحان الفترة الدراسية الثانية للصف الثاني عشر علمي 2022 / 2023 م

القسم الأول :أسئلة المقال: (تراعى الحلول الأخرى في جميع أسئلة المقال)

السوال الأول:

a أوجد:

(درجات)
$$(1) \int (x^2 + \cos 2x) dx$$

الحل:

$$1 + 1 + 1$$
almanahi.com/kw
$$(x^2 + \cos 2x)dx = \frac{1}{3}x^3 + \frac{1}{2}\sin 2x + C$$

(درجات) (2)
$$\int 3xe^{2x+1}dx$$

الحل:

$$\frac{1}{2} + \frac{1}{2}$$
 $\frac{1}{2} + \frac{1}{2}$

$$u = 3x$$

$$dv = e^{2x+1}dx$$

$$du = 3 dx$$

$$v = \frac{1}{2} e^{2x+1}$$

$$\int u dv = uv - \int v du$$

$$\int 3x e^{2x+1} dx = \frac{3}{2} x e^{2x+1} - \frac{3}{2} \int e^{2x+1} dx$$

$$= \frac{3}{2} x e^{2x+1} - \frac{3}{4} e^{2x+1} + C$$

تابع: السؤال الأول:

 $\frac{x^2}{16} + \frac{y^2}{36} = 1$ معادلة قطع ناقص فأوجد:

- (1) رأسى القطع وطرفى المحور الأصغر.
 - (2) البؤرتين.
 - (3) معادلتي دليلي القطع.
 - (4) طول كل من المحورين.

(7 درجات)

CONTRO

الجل:

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$
: معادلة القطع الناقص هي (1) معادلة القطع الناقص و منها نجد أن

$$a^2 = 36 \rightarrow a = 6$$

 $b^2 = 16 \rightarrow b = 4$

 $b^2 = 16 \rightarrow b = 4$

المحور الأكبر ينطبق على محور الصادات A_1 (0 , -6) , A_2 (0 , 6) : القطع هما $\mathsf{B}_1 \left(\, -4 \, , \, 0 \, \right) \, , \, \mathsf{B}_2 \left(\, 4 \, , \, 0 \, \right) \, : \,$ طرف المحور الأصغر هما

$$c^2=a^2-b^2=36-16=20$$
 (2) $c=\sqrt{20}=2\sqrt{5}$ و منه F_1 (0 , $-2\sqrt{5}$) , F_2 (0 , $2\sqrt{5}$) : البؤرتين هما

: معادلة الدليلين
$$y = -\frac{a^2}{c}$$
, $y = \frac{a^2}{c}$ عددلة الدليلين $y = \frac{a^2}{c} = \frac{36}{2\sqrt{5}} = \frac{18}{\sqrt{5}} = \frac{18\sqrt{5}}{5}$

$$y = -\frac{a^2}{c} = -\frac{36}{2\sqrt{5}} = -\frac{18}{\sqrt{5}} = -\frac{18\sqrt{5}}{5}$$

$$2a = 2 \times 6 = 12 : 2a$$
 طول المحور الأكبر هو (4)

$$2b=2 imes4=8$$
 : $2b$ هول المحور الأصغر هو (5)

1 1

1

 $\frac{1}{2}$

1 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

> 1 $\overline{2}$ 1

السوال الثاني:

 F_1 (- 4, 0) , F_2 (4 , 0) بؤرتاه (10, 4) , F_2 (10) اوجد معادلة الفطع الزائد الذي بؤرتاه (10 , 2 , 0) , A_2 (2 , 0) و رأساه (10 , 2 , 0) , A_2 (2 , 0)

(6 درجات)

الحل:

$\frac{1}{2}$ $\frac{1}{2}$	
$\frac{1}{2}$	موقع المناهج الك
$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $.com/kw
$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 : معادلة القطع الزائد هي $\frac{y^2}{a^2}$

 F_2 (4 , 0) باحدى البؤرتين

$$c = 4 :$$

$$a = 2 :$$

$$b^2 = c^2 - a^2 = 16 - 4 = 12$$

 $b = \sqrt{12} = 2\sqrt{3}$ و منه

$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$
 عادلة القطع الزائد هي :

معادلتا الخطين المقاربين هما

$$y = \pm \frac{b}{a} x$$

$$y = \pm \frac{2\sqrt{3}}{2} x$$

$$y = \pm \sqrt{3} x$$

 $\frac{1}{2}$

1

$$f(x) = \frac{x+17}{2x^2+5x-3}$$
 : f its its f

تابع: السؤال الثاني:

فأوجد:

1) الكسور الجزئية .

$$\int f(x) dx \quad (2)$$

الحل:

1
$$2x^2 + 5x - 3 = (2x - 1)(x + 3)$$
 : in the state of th

$$\frac{1}{2x^2 + 5x - 3} = \frac{A_1}{2x - 1} + \frac{A_2}{x + 3}$$

$$x + 17 = A_1(x + 3) + A_2(2x - 1)$$

عوض عن
$$x \mapsto \frac{1}{2} + 17 = A_1 \left(\frac{1}{2} + 3\right) + A_2 \left(2\left(\frac{1}{2}\right) - 1\right) \rightarrow A_1 = 5$$
 عوض عن $x \mapsto 2$

$$\frac{1}{2} \qquad \int \frac{x+17}{2x^2+5x-3} \, dx = \int \left(\frac{5}{2x-1} - \frac{2}{x+3}\right) \, dx \qquad (2)$$

$$= \int \frac{5}{2x-1} \, dx - \int \frac{2}{x+3} \, dx$$

$$= 5 \int \frac{1}{2x-1} \, dx - 2 \int \frac{1}{x+3} \, dx$$

$$= \frac{5}{2} \ln|2x-1| - 2 \ln|x+3| + C$$

(4)

السؤال الثالث !

الذي ميله عند أي نقطة P(x,y) يساوي: P(x,y) يساوي: A(1,2) ويمر بالنقطة $3x^2 - 4x + 1$

(6 درجات)

1

 $\frac{1}{2}$

 $\frac{1}{2}$

<u>الحل:</u>

لتعيين قيمة الثابت C نعوض بالنقطة A(1,2) في المعادلة السابقة

$$2=(1)^3-2(1)^2+1+C$$
 : فنحصل على

$$2 = 1 - 2 + 1 + C$$
$$C = 2$$

معادلة المنحنى f المطلوب هي:

$$f(x) = x^3 - 2x^2 + x + 2$$

تابع: السؤال الثالث:

(b) استخدم التعويض المناسب لايجاد التكامل :

$$\int x^3 \sqrt{x^2 - 2} \ dx$$
 (درجات)

الحل:

$$1 + 1$$

$$u = x^2 - 2 \implies x^2 = u + 2$$

$$1 + 1$$

$$du = 2x dx \implies x dx = \frac{1}{2} du$$

almanahj.c

$$\int x^3 \sqrt{x^2 - 2} \, dx = \int \sqrt{x^2 - 2} \, x^2 (x \, dx)$$

1

$$=\int \sqrt{u}(u+2)\left(\frac{1}{2}du\right)$$

1

$$= \int \frac{1}{2} \left(u^{\frac{3}{2}} + 2u^{\frac{1}{2}} \right) du$$

 $\frac{1}{2}$

$$= \int \left(\frac{1}{2} u^{\frac{3}{2}} + u^{\frac{1}{2}}\right) du$$

_

$$= \frac{1}{5} u^{\frac{5}{2}} + \frac{2}{3} u^{\frac{3}{2}} + C$$

 $1\frac{1}{2}$

$$= \frac{1}{5} (x^2 - 2)^{\frac{5}{2}} + \frac{2}{3} (x^2 - 2)^{\frac{3}{2}} + C$$

السؤال الرابع:

(a) أوجد مساحة المنطقة المحددة بمنحنيي الدالتين:

$$y_1=x^2+2$$
 , $y_2=-2x+5$

الحل:

لإيجاد الاحداثيات السينية لنقاط التقاطع:

 $y_1 = y_2$ نضع

$$x^{2} + 2 = -2x + 5$$

 $x^{2} + 2x - 3 = 0$
 $x = 1$ $\hat{x} = -3$

x=1 الي x=-3 و مساحة المنطقة هي:

$$\frac{1}{2} \qquad A = \left| \int_{-3}^{1} (y_2 - y_1) \, dx \right| \\
1 \qquad A = \left| \int_{-3}^{1} [(-2x + 5) - (x^2 + 2)] \, dx \right| \\
= \left| \int_{-3}^{1} [-x^2 - 2x + 3] \, dx \right| \\
= \left| \left[\frac{-x^3}{3} - x^2 + 3x \right]_{-3}^{1} \right| \\
2 \qquad = \left| \left[\frac{-(1)^3}{3} - (1)^2 + 3(1) \right] - \left[\frac{-(-3)^3}{3} - (-3)^2 + 3(-3) \right] \right| \\
= \left| \frac{32}{3} \right| \\
= \frac{32}{3} \qquad (2x^2 + 3x)^2 + 3(2x) = 3x$$

تابع: السؤال الرابع:

"عند إلقاء قطعة نقود ثلاث مرات متتالية ، إذا كان المتغير العشوائي X يعبّر عن "عدد الكتابات b

فأوجد ما يلي:

- n(S) فضاء العينة n(S) و عدد عناصره
 - 2) مدى المتغيّر العشوائي X .
- 3) احتمال كل عنصر من عناصر مدى المتغيّر العشوائي X.
 - . X دالة التوزيع الاحتمالي f للمتغير العشوائي f

(7 درجات)

الحل:

(2

(S) فضاء العينة (S)

عناصر فضاء العينة	عدد الكتابات في كل عنصر	
(H,H,H)	0	
(H,H,T)	1	
(H,T,H)	1	
(T,H,H)	1	
(H,T,T)	2	
(T,H,T)	2	
(T,T,H)	2	
(T,T,T)	3	

$$X = \{ 0, 1, 2, 3 \}$$
: مدى المتغير العشوائي:

3)
$$P(X = 0) = \frac{1}{8}$$

 $P(X = 1) = \frac{3}{8}$
 $P(X = 2) = \frac{3}{8}$
 $P(X = 3) = \frac{1}{8}$

4) دالة التوزيع الاحتمالي للمتغير العشوائي X:

\boldsymbol{x}	0	1	2	3
F (-1)	1	3	3	1
f(x)	8	8	8	8

 $1\frac{1}{2}$

 $\frac{1}{2}$

Soll Jan.

القسم الثاني البنود الموضوعية (لكل بند درجة واحدة)

إذا كانت العبارة صحيحة, إذا كانت العبارة خاطئة. في البنود من (1) إلى (3) عبارات لكل بند في ورقة الإجابة ظلل

$$\int_{-1}^{1} (|x|)^3 dx = -\frac{1}{2} \qquad (1)$$

إذا كانت $y^2=-rac{1}{2}x$ معادلة قطع مكافئ ،فإن خط التماثل هو محور السينات (2)

(a) 18

المساحة تحت منحنى التوزيع الطبيعى تساوي الواحد . (3)

في البنود من(4) إلى (10) لكل بند أربعة اختيارات واحد فقط منها صحيح – اختر الإجابة الصحيحة ثم ظلل في ورقة الإجابة دائرة الرمز الدال عليها.

$$\int_{-1}^{3} (2f(x) + 3g(x) + 1)dx$$
 اِذَا كَان: $\int_{-1}^{3} f(x)dx = 4$, $\int_{3}^{-1} g(x)dx = 2$ الناوي (4)

(b)-6

c 6

(d) 12

يناوي
$$\frac{dy}{dx}$$
 فإن $y = \ln(\frac{10}{x})$ تساوي (5)

- $\bigcirc \frac{1}{r}$
- $\left(\frac{1}{r} \right)$

يساوي
$$\int \frac{2 + \sqrt[3]{x^2}}{\sqrt{x}} dx \qquad (6)$$

(b)
$$4x^{\frac{1}{2}} + \frac{6}{7}x^{\frac{7}{6}} + C$$

(d)
$$4x^{\frac{1}{2}} + \frac{7}{6}x^{\frac{7}{6}} + C$$

x=5 عند y=3 الذي يحقق y=3 عند y=5 هو: (7) عند y=5 عند (7)

(a)
$$y = 2 e^{\frac{5}{2}}$$

(c)
$$y = 2 e^{(-\frac{1}{2}x + \frac{5}{2})} + 1$$

(d)
$$y = 2 e^{(-\frac{1}{2}x - \frac{5}{2})} + 1$$

 $\frac{x^2}{36} + \frac{y^2}{25} = 1$ هو: (8) الاختلاف المركزي للمعادلة

$$\bigcirc a \frac{\sqrt{11}}{6}$$

$$\bigcirc \frac{36}{25}$$

$$\bigcirc$$
 $\left(0, \frac{-4}{3}\right)$

$$\bigcirc \left(0,\frac{1}{12}\right)$$

$$\left(\frac{9}{20},0\right)$$

(9) بؤرة القطع المكافئ في الشكل المقابل هي:

$$\left(\frac{1}{12},0\right)$$

: هي تغيراً عشوائياً متقطعاً دالة التوزيع الاحتمالي f هي الله f (10)

x	0	1	2
f(x)	0.25	0.50	0.25

فإن التوقع له يساوي:

(a) 1.25

(b) 1.5 0.5

تمت الأسئلة مع التمنيات بالتوفيق

إجابة الأسئلة الموضوعية

رقم السؤال	الإجابة			
1	a	(b)		
2	a	(b)		
3	a	b		
4	a	(b)	C	d
5	a	(b)	c	d
6	a	(b)	c	d
7	a	b	C	\bigcirc
8	a	(b)	C	d
9	a	b	©	d
10	a	(b)	c	d

موقع لناهج الكويتية almanahi com/kw

توقيع المصحح:

توقيع المراجع:

