

المزيد من الملفات بحسب الصف الحادي عشر العلمي والمادة رياضيات في الفصل الثاني				
<u>النموذج الاول 11 علمي(1)</u>	1			
<u>هندسة الفضاء بالحلول في مادة الرياضيات</u>	2			
مراجعة هامة ومتوقعة في مادة الرياضيات	3			
<u>تحميل كتاب الطالب(تمارين)علمي</u>	4			
تحميل كتاب الطالب	5			

دولة الكويت وزارة التربية التوجيه الفني العام للرياضيات

المجال الدراسي : الرياضيات الزمن : ساعتان و خمسة وأربعون دقيقة عدد الصفحات : 11

نموذج إجابة امتحان الفترة الدراسية الثانية للصف الحادي عشر علمي للعام الدراسي : 2022/2021 م

وزارة 7

CONTRO

(1)

تابع السوال الأول :

(درجات) $\sin \theta = \frac{-1}{\sqrt{2}} , \pi < \theta < \frac{3\pi}{2} : (b)$

فأوجد sin 2*θ*

الحل :

 $sin \ 2\theta = 2 \ sin \ \theta \ \cos \theta$

1 = 2
$$\left(\frac{-1}{\sqrt{2}}\right) \left(\frac{-1}{\sqrt{2}}\right)$$

1 = 1

1

$$L(1, -\sqrt{3}), 0 \le \theta < 2\pi$$

الحل :

$$1 + 1$$

$$r = \sqrt{(1)^{2} + (-\sqrt{3})^{2}} = \sqrt{4} = 2$$

$$1 + 1$$

$$1 + 1$$

$$\therefore tan \alpha = \left|\frac{y}{x}\right| = \left|\frac{-\sqrt{3}}{1}\right| = \sqrt{3}$$

$$\frac{1}{2}$$

$$\alpha = tan^{-1} \sqrt{3}$$

$$\frac{1}{2}$$

$$\alpha = \frac{\pi}{3}$$

$$\therefore x > 0, y < 0$$

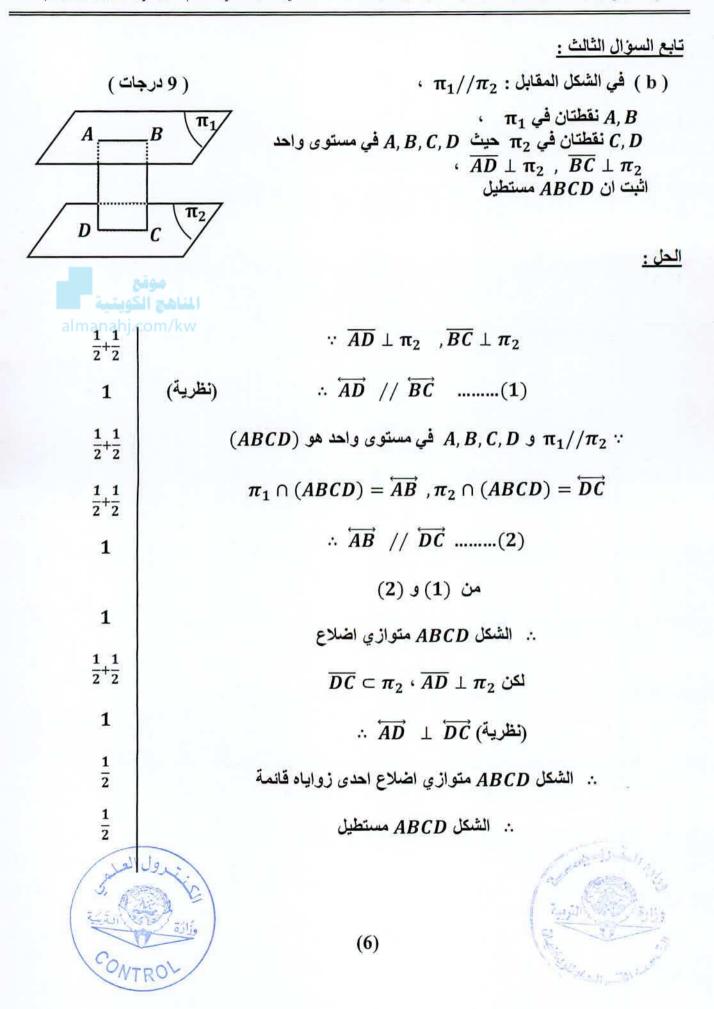
$$\frac{1}{2}$$

$$\therefore \theta = 2\pi - \alpha = 2 \pi - \frac{\pi}{3} = \frac{5\pi}{3}$$

$$\frac{1}{2}$$

$$L\left(2,\frac{5\pi}{3}\right)$$

$$\therefore (Y = 1)$$


(3)

تابع السؤال الثاني :العل:
$$0 \le x \le 2\pi$$
 حيث $\cos x = -\frac{1}{2}$ (8 درجات)العل: $\cos x = -\frac{1}{2}$ $\cos x = \frac{1}{2}$ العل: $x = \frac{1}{2}$ $x = \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2}$ $\cos \alpha = |\cos x| = |\frac{-1}{2}| = \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2}$ $\therefore \alpha = \frac{\pi}{3}$ $2 \cdot \cos x < 0$ $\frac{1}{2} \cdot \frac{1}{2}$ $\frac{1}{2} \cdot \frac{1}{2}$ $x = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \in [0, 2\pi]$ 1 $x = \pi - \frac{\pi}{3} = \frac{2\pi}{3} = [0, 2\pi]$ 1 $x = \pi + \frac{\pi}{3} = \frac{4\pi}{3} \in [0, 2\pi]$ $1 + 1$ $x = \frac{2\pi}{3}$ $x = \frac{2\pi}{3}$ $x = \frac{4\pi}{3}$ $x = \frac{2\pi}{3}$ $x = \frac{4\pi}{3}$ $x = \frac{2\pi}{3}$ $x = \frac{4\pi}{3}$

(4)

Service and a service of

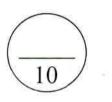
		درجة)	السوال الثالث : (15
ات)	$a = 4 \ cm$, b = 3 cm , c = 6 cm	حيث :	(a) حل المثلث ABC
al <u>1</u> an 2	$B = \frac{\beta}{C} + \frac{6}{3} + \frac{6}{3}$ $C = \frac{b^2 + c^2 - a^2}{2bc}$		<u>الحل :</u>
$\frac{1}{2}$	$=\frac{9+36-16}{(2)(3)(6)}$		
$\frac{1}{2}$	$= \frac{29}{36}$		الما العليم
$\frac{1}{2}$	$\alpha = \cos^{-1}(\frac{29}{36}) \approx 36.3^{\circ}$		CONTROL
$\frac{1}{2}$	$\cos \beta = \frac{a^2 + c^2 - b^2}{2ac}$		ONIKO
$\frac{1}{2}$	$=\frac{16+36-9}{(2)(4)(6)}$		
$\frac{1}{2}$	$=\frac{43}{48}$		
$\frac{1}{2}$	$\beta = \cos^{-1}(\frac{43}{48}) \approx 26.4^{\circ}$		
$\frac{1}{2}$	$\gamma = 180 - (\alpha + \beta)$		
1	$\approx 180 - (36.3^\circ + 26.4^\circ)$		Control 101 as
$\frac{1}{2}$	= 117.3°		24,20 505
	- (5)		Marine and

$$\begin{array}{c} \underbrace{12}{12}\\ \frac{1}{12}\\ \frac{1}{12$$

(7)

تابع السؤال الرابع: π قطران في مستوى الدائرة $\overline{\mathrm{AB}}$, $\overline{\mathrm{CD}}$: في الشكل المقابل (b) (9 درجات) $\overrightarrow{\mathrm{GH}}$ يوازي $\pi_1 \cap \pi_2 = \overrightarrow{\mathrm{GH}}$ ، أثبت أن مستوى الدائرة $\pi_1 \cap \pi_2 = \overrightarrow{\mathrm{GH}}$ (π^{-m}/ الحل : R π قطران في مستوى الدائرة $\overline{\mathrm{AB}}\,,\overline{\mathrm{CD}}\,:$ 1 .: ينصف كل منهما الآخر و متطابقان 1 : الشكل ACBD مستطيل 1 $\therefore \overline{AC} // \overline{DB} \dots \dots \dots (1)$ 1 $\overline{AC} \subset \pi_1$, $\overline{DB} \subset \pi_2$ 1 $\pi_2 \cap \pi_1 = \overleftarrow{\operatorname{GH}}$(2) 1 من (1) · (2) · (1) من 1 ••• $:: \overrightarrow{GH} / / \overrightarrow{AC} , \overrightarrow{AC} \subset \pi$ 1 $\therefore \overrightarrow{\mathbf{GH}} / \pi$ 1 GH أي أن مستوى الدائرة π يوازي (8)

ثانيا: البنود الموضوعية a أولا: في البنود من (1) إلى (3) عبارات ظلل إذا كانت العبارة صحيحة b إذا كانت العبارة خاطئة . 3+2i الصورة الجبرية للعدد $3+\sqrt{-4}+3$ هي (1) $\cos x = 2\cos^2\frac{x}{2} - 1$ (2) $.\vec{l}//\vec{m}$ فان $\vec{l}//\pi$, $\vec{m}//\pi$ (3) ثانيا : في البنود من (4) إلى (10) لكل بند أربعة اختيارات واحد فقط منها صحيح ظلل في ورقة الإجابة الرمز الدال على الإجابة الصحيحة . (4) أبسط صورة للتعبير: $(-\sqrt{-9})(4+\sqrt{-9})$ هي: $18 + 3\sqrt{-9} + 4\sqrt{-4}$ 18 + 17i6 + 17i18 :فإن قيمة $(i^{2n+2}+i^{2n+8})$ تساوي $\forall n\in z^+$ (5) i^{-2n} 0 1 -1(b)(c)d (a) :تساوي sin $\left(x+\frac{\pi}{6}\right)$ (6) (a) $\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x$ (b) $\frac{1}{2}(\sin x + \cos x)$ $(d)\frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x$ $c)\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x$ (9)


إذا كان x = 0 فإن x = x فإن x تقع في الربع: (7) (a) الأول (b) الأول أو الثالث c) الثالث CONTRO d) الثاني أو الرابع (8) في الشكل المقابل: النقاط B, C, D تعين: a) مستويًا واحدًا مستويين مختلفين c) عدد لا منته من المستويات المختلفة B d) لا يمكن أن تعين مستويًا (9) في الشكل المقابل: إذا كان $(AMB) \perp \overline{AB}$ ، $\overrightarrow{l} \perp (AMB)$ قطر في الدائرة (C) فإن: M (a) $\overrightarrow{AB} \perp \overrightarrow{BD}$ (b) $\vec{l} \perp (BMD)$ (c) $\bigcirc \overleftarrow{AM} \perp (BMD)$ (d) $\overrightarrow{AB} \perp \overrightarrow{BM}$ (10) في المكعب BD , EG ، ABCDEFGH هما: a) متوازیان E b متقطعان (c) متخالفان B d) يحويهما مستو واحد " انتهت الأسئلة " (10)

ورقة إجابة البنود الموضوعية

السىؤال	الاجابة					
(1)	a	Ь				
(2)	a	b				
(3)	a	b				
(4)	a	℗	C	đ		
(5)	a	b	©	đ		
(6)	a	b	C	đ		
(7)	a	b	©	d		
(8)	a	b	©	d		
(9)	a	b	C	đ		
(10)	a	b	C	d		

لكل بند درجة واحدة فقط

موقع المناهج الكويت

