تم تحميل هذا الملف من موقع المناهج الكويتية
الملف نموذج الإجابة المعتمد من التوجيه الفني

المزيد من الملفات بحسب الصف الثاني عشر العلمي والمادة رياضيات في الفصل الأول	
نموذج اختبار أول ثانوية الرشيد بنين	1
تحميع اختبارات قصرات	2
تمارين الاتصال(موضوعد)(في مادة الرياضيات	3
الورق عمل الاختبار القصير في مادة الرياضيات	4
حل كتاب التمارين في مادة الرياضيات	5

نُموذج إجابة امتحان الفترة الارراسية الأولى للصف الثاني عشر علمي للعام الاراسي 2022/ 2023 م

(7 7 (7)

القسم الأول : أسئلة المقال

تراعى الحلول الأخرى في جميع أسئلة المقال

اللســـئال الأول

$$
\begin{equation*}
y=x+x^{2} y^{5} \quad: \quad \frac{d y}{d x} \quad \text { : أوجث (a) } \tag{a}
\end{equation*}
$$

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d x}{d x}+d \frac{\left(x^{2} y^{5}\right)}{d x} \\
y \backslash=1+y^{5} \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}\left(y^{5}\right) \\
y \backslash=1+2 x y^{5}+5 x^{2} y^{4} y \backslash \\
y \backslash-5 x^{2} y^{4} y \backslash=1+2 x y^{5} \\
y \backslash\left(1-5 x^{2} y^{4}\right)=1+2 x y^{5} \\
y \backslash=\frac{1+2 x y^{5}}{1-5 x^{2} y^{4}}
\end{gathered}
$$

$\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}$
أوجد :

$$
\left.\begin{array}{l}
1 \begin{array}{l}
=\lim _{x \rightarrow 0}\left(\frac{x^{2}}{1-\cos x} \times \frac{1+\cos x}{1+\cos x}\right) \\
=\lim _{x \rightarrow 0} \frac{x^{2}}{(1-\cos x)(1+\cos x)} \cdot(1+\cos x) \\
= \\
1 \\
1 \\
+\frac{1}{2} \quad=\lim _{x \rightarrow 0}\left(\frac{x^{2}}{\left(1-\cos ^{2} x\right)} \cdot(1+\cos x)\right) \\
1 \\
1 \\
1
\end{array} \quad=\lim _{x \rightarrow 0}\left(\left(\frac{x}{\sin ^{2} x} \cdot(1+\cos x)\right)\right. \\
1
\end{array} \quad=\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)^{2} \cdot(1+\lim \cdot \cos x)\right)
$$

اللسـؤال الثـاني
لتكن الدالة f : $f(x)=x^{3}-12 x-4$. أوجد كلاً مما يلى :
(a) النقاط الْحرجةّ للدالة
(8 درجات)
(b) الفترات الثتي نكون اللالة f f (a ايدة أو متناقصة عليها .
(c) القيم القصوى المحلية.
: لـلـ)
f \because
(a)
$x \in R: x$ متصلة وقابلة لإِثتقّق عند كل $f=$
نوجد النقاط الحرجة
$f \backslash(x)=3 x^{2}-12$
$f \backslash(x)=0 \rightarrow 3 x^{2}-12=0$
$3(x-2)(x+2)=0 \rightarrow x=2, x=-2$
\therefore
(b) نكون الجدول لدراسة إشارة \}

نلاحظ من الجدول : الدالة متز ايدة على الفنرة (2 , (-1) والفترة (2 (2) ومثناقصة على الفترة $(2,2)$

$$
\begin{equation*}
\text { القِمة العظمى المحلية عند } x=-2 \text { هي } 12=1-2(-2) \tag{c}
\end{equation*}
$$

$$
\begin{aligned}
g(x) & =\sqrt{x} \quad, f(x)=x^{2}+5: \text { لتكن } \\
x & =-2 \text { ابحث اتصال الألة gof }
\end{aligned}
$$

(7 درجات)

$$
\begin{aligned}
& \text { (1) } \leftarrow \quad x=-2 \text { دالة منصلة عند } f \\
& f(-2)=(-2)^{2}+5=9 \\
& x \in R^{+} \text {متصلة عند كل } \quad, \quad g(x)=\sqrt{x} \\
& x=9 \text { و دالةمنصلة } g \text { عن } \\
& \text { (2) } \quad x=f(-2) \text { أي أن } g \text { دالة منصلة عند } \\
& \text { من (1) ,(2) نجد أن : } \\
& x=-2 \text { منصلة (gof) }
\end{aligned}
$$

：f أوجد فترات التقعر ونقطة الإنعطاف لمنحنى الدالةّ（a）

$$
f(x)=2 x^{3}+3 x^{2}-1
$$

（ 7 （رجات
دالثة كثُرْةٌ حدود
R قابلة للاشُنقاق على $\quad \therefore$

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}+6 x \\
& f^{\prime \prime}(x)=12 x+6
\end{aligned}
$$

$$
f^{\prime \prime}(x)=0
$$

$$
12 x+6=0 \quad \Rightarrow \quad x=-\frac{1}{2}
$$

$$
\therefore f\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)^{2}-1=-\frac{1}{4}+\frac{3}{4}-1=-\frac{1}{2}
$$

：نكون جدول لدراسـة إشارة＂

بيان الدالة f م
 نقّطة الإنتعطاف هي ：$\left(-\frac{1}{2},-\frac{1}{2}\right)$

$$
f(x)=\left\{\begin{array}{llll}
x+3 & : x \leq-1 & : \text { تابع :الســـؤال الثـالث (b) } \\
\frac{4}{x+3} & : x>-1 & : f \text { (b) }
\end{array}\right.
$$

(8 درجات)

الدرس اتصـال الاالة f على مجالها

$$
\begin{equation*}
y=\frac{8}{4+x^{2}} \quad \text { أوجد معادلة المماس لمنحنى الدالة } \tag{a}
\end{equation*}
$$

عند الثقّطة $(2,1)$
(8)

(b) عينة عشوائية حجمها 36 ، فإذا كان المتوسط الحسابي للعينة 60 وتباينها 16 باستخدام مستوى ثقّة

أوجد هامش الخطأ .
أوجد فترة الثقةّة للمتوسط الحسابي للمجتمع الإحصائي
فسر فتّرة الثقةّة
(7 درجات)

$$
\therefore \quad Z_{\frac{\alpha}{2}}=1.96
$$

$$
\begin{gathered}
n>30, \quad \text { غير معلوم } \quad \sigma^{2} \because \\
E=Z_{\frac{\alpha}{2}} \times \frac{S}{\sqrt{n}}
\end{gathered}
$$

$$
=1.96 \times \frac{4}{\sqrt{36}}
$$

$$
=1.3066
$$

$1.3067 \approx$
فترة الثقة هي :

$$
(60-1.3067,60+1.3067)
$$

$(58.6933,61.3067)$
(3) عند اختيار 100 عينة عشوائية ذات الحجم نفسه (n=36) وحساب حدود فترة الثقة لكل عينة فإننا نتوقع أن 95 فترة تحوي القيمة الحقققية لللتّوسط الحسابي للمجتمع

$$
\begin{align*}
& \bar{x}=60 \text { : حجم العينة : } n=36 \text { ، الدتوسط الحسابي } \\
& \text { النباين : } \\
& \text { 95\% مستوى الثقة } \tag{1}
\end{align*}
$$

القسم الثثاني (البنود الموضوعية)
أولا : في البينود من(1) إلى (3) عبارات ظطل في ورقّة الإجابـة": (a) إذا كاتت العبارة صحيحة (b) إذا كاتت العبارة خاطئة

$$
\begin{equation*}
\lim _{x \rightarrow 0^{-}} \frac{\sqrt{x^{2}}-x}{x}=-2 \tag{1}
\end{equation*}
$$

ثُّانياً : في البنود من (4) إلى (10) لكل بئد أريع اختيارات واحد فقط منها صحيح ظلل في ورقة الإجابة الرمز الاال على الاختيار الصحيح
: يساوي $\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin x}$
(a) 0
(b) ∞
(c) -2
(d) $\mathbf{2}$

$$
\begin{array}{r}
\text {, } x=a \text { لتكن الدالة } g(x)= \begin{cases}x+1 & : x>a \\
3-x & : x \leq a\end{cases} \tag{5}\\
: a \text { : } a \text { تساوي } a \in Z
\end{array}
$$

(a) 0
(b) $\mathbf{1}$
(c) $\mathbf{2}$
(d) -1

$$
\lim _{x \rightarrow-2}\left(x^{2}+f(x)\right)=7 \text { (6) إدا كاثت الدالة } f=-2 \text { متصلة عتد } x=4 \text { وكاثت }
$$ فإن($f(-2)$ تساوي :

(a) 3
(b) 5
(c) 9
(d) 11
(7)
(a) $\frac{8}{27}(1+6 x)^{\frac{-4}{3}}$
(b) $8(1+6 x)^{\frac{-4}{3}}$
(c) $-8(1+6 x)^{\frac{-4}{3}}$
(d) $-64(1+6 x)^{\frac{-4}{3}}$

إذا كانت $y=\frac{1}{x}+5 \sin x \quad y^{\prime}$ تساوي :
(a) $\frac{1}{x^{2}}+5 \cos x$
(b) $-\frac{1}{x^{2}}-5 \cos x$
(c) $\frac{1}{x^{2}}-5 \cos x$
(d) $-\frac{1}{x^{2}}+5 \cos x$

إذا كانت f دالة كثيرةّ حدود من اللارجة الثّالثة والثككل المقابل

(a) $(-1,4]$
(b) $(3, \infty)$
(c) $(-\infty, 3)$
(d) $(3,5)$
(10) مستطيل مساحته 36 فإن أبعاده التّي تُطي أصغر محيط هي :
(a) $6 \mathrm{~cm}, 6 \mathrm{~cm}$
(b) $12 \mathrm{~cm}, 3 \mathrm{~cm}$
(c) $9 \mathrm{~cm}, 4 \mathrm{~cm}$
(d) $18 \mathrm{~cm}, 2 \mathrm{~cm}$

جدول إجابة البنود الموضوعية

